Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(2): 541-548, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38185876

RESUMO

Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 µmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.

2.
J Colloid Interface Sci ; 659: 432-438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183809

RESUMO

Electrocatalytic NO2- reduction to NH3 (NO2RR) holds great promise as a green method for high-efficiency NH3 production. Herein, an Rh single-atom catalyst where isolated Rh supported on defective BN nanosheets (Rh1/BN) is reported to exhibit the exceptional NO2RR activity and selectivity. Extensive experimental and theoretical studies unveil that the high NO2RR performance of Rh1/BN arises from the single-atom Rh sites, which not only promote the activation and hydrogenation of NO2--to-NH3 process, but also hamper the undesired hydrogen evolution. Consequently, Rh1/BN assembled in a flow cell exhibits the highest NH3 yield rate of 2165.4 µmol h-1 cm-2 and FENH3 of 97.83 % at a high current density of 355.7 mA cm-2, ranking it the most efficient catalysts for NO2--to-NH3 conversion.

3.
Health Phys ; 126(3): 134-140, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117190

RESUMO

ABSTRACT: Quantification of gamma-H2AX foci can estimate exposure to ionizing radiation. Most nuclear and radiation accidents are partial-body irradiation, and the doses estimated using the total-body irradiation dose estimation formula are often lower than the actual dose. To evaluate the dose-response relation of gamma-H2AX foci in human peripheral blood lymphocytes after partial-body irradiation and establish a simple and high throughput model to estimate partial-body irradiation dose, we collected human peripheral blood and irradiated with 0-, 0.5-, 1-, 2-, 3-, 4-, 5-, 6-, and 8-Gy gamma rays to simulate total-body irradiation in vitro. Gamma-H2AX foci were quantitated by flow cytometry at 1 h after irradiation, and a dose-response curve was established for total-body irradiation dose estimation. Then, a partial-body irradiation dose-response calibration curve was established by adding calibration coefficients based on the Dolphin method. To reflect the data distribution of all doses more realistically, the partial-body irradiation dose-response calibration curve was divided into two sections. In addition, partial-body irradiation was simulated in vitro, and the PBI data were substituted into curves to verify the accuracy of the two partial-body irradiation calibration curves. Results showed that the dose estimation variations were all less than 30% except the 25% partial-body irradiation group at 1 Gy, and the partial-body irradiation calibration dose-response curves were YF 1 = - 3.444 x 2 + 18.532 x + 3.109, R 2 = 0.92 (YF ≤ 27.95); YF 2 = - 2.704 x 2 + 37.97 x - 56.45, R 2 = 0.86 (YF > 27.95). Results also suggested that the partial-body irradiation dose-response calibration curve based on the gamma-H2AX foci quantification in human peripheral blood lymphocytes is a simple and high throughput model to assess partial-body irradiation dose.


Assuntos
Histonas , Linfócitos , Humanos , Relação Dose-Resposta à Radiação , Linfócitos/efeitos da radiação , Radiação Ionizante , Raios gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA