Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Hazard Mater ; 476: 135046, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38964038

RESUMO

Emerging contaminants pose a potential risk to aquatic ecosystems in the Pearl River Basin, China, owing to the high population density and active industry. This study investigated samples from eight sewage treatment plants, and five surface water bodies of related watersheds. To screen the risk of emerging contaminants (ECs), and clarify their sources, this study calculated the risk quotient of detected chemical and performed source identification/apportionment using the positive matrix factorization method. In total, 149 organic pollutants were identified. Pharmaceuticals showed significant concentrations in sewage treatment plant samples (120.87 ng/L), compared with surface water samples (1.13 ng/L). The ecological risk assessment identified three chemicals with a heightened risk to aquatic organisms: fipronil sulfide, caffeine, and roxithromycin. Four principal sources of contaminants were identified: pharmaceutical wastewater, domestic sewage, medical effluent, and agricultural runoff. Pharmaceutical wastewater was the primary contributor (60.4 %), to the cumulative EC concentration and to ECs in sewage treatment plant effluent. Agricultural drainage was the main source of ECs in surface water. This study provides a strategy to obtain comprehensive information on the aquatic risks and potential sources of EC species in areas affected by artificial activities, which is of substantial importance to pollutant management and control.

2.
Environ Pollut ; 357: 124392, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897283

RESUMO

Tetrabromobisphenol-A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a novel additive brominated flame retardant, is being developed for use in polyolefin and copolymers. Despite its emerging application, the neurotoxicity and mechanisms of action of TBBPA-BDBPE remain unexplored. Caenorhabditis elegans was utilized as the model organism to study the neurotoxic effects of TBBPA-BDBPE across environmental concentrations ranging from 0 to 100 µg/L. This investigation focused on various toxicological endpoints such as locomotive behavior, neuronal injury, neurotransmitter transmission, and the regulation of nervous system-related gene expression. Acute exposure to TBBPA-BDBPE at concentrations of 10-100 µg/L significantly impaired nematode movement, indicating potential neurotoxicity. In transgenic nematodes, this exposure also caused damage to γ-aminobutyric acid (GABAergic) and serotonergic neurons, along with notable changes in the levels of GABAergic and serotonergic neurotransmitters. Further molecular studies indicated alterations in neurotransmission-related genes (cat-4, mod-1, unc-25, and unc-47). Molecular docking analysis confirmed the binding affinity of TBBPA-BDBPE to key neurotransmission proteins-CAT-4, MOD-1, UNC-25, and UNC-47. These findings demonstrate that TBBPA-BDBPE exerts neurotoxic effects by impacting GABAergic and serotonergic neurotransmission in nematodes. This study provides new insights into the potential environmental risks of TBBPA-BDBPE.

3.
Chemosphere ; 362: 142519, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830467

RESUMO

Although polystyrene microplastics (PS-MPs) could induce toxic effects on environmental organisms, the toxicity of aged PS-MPs with H2O2 on soil organisms remains unclear. Our study utilized Caenorhabditis elegans as model organism to examine the reproductive toxicity of pristine PS-MPs (pPS-MPs) and aged PS-MPs (aPS-MPs) at environmentally relevant concentrations (0.1-100 µg/L). Acute exposure to aPS-MPs could induce greater reproductive impairment compared to pPS-MPs, as evidenced by changes in brood size and egg release. Assessment of gonad development using the number of mitotic cells, length of gonad arm, and relative area of gonad arm as parameters revealed a high reproductive toxicity caused by aPS-MPs exposure. Furthermore, aPS-MPs exposure promoted substantial germline apoptosis. Additionally, exposure to aPS-MPs (100 µg/L) markedly altered the expression of DNA damage-induced apoptosis-related genes (e.g., egl-1, cep-1, clk-2, ced-3, -4, and -9). Alterations in germline apoptosis caused by aPS-MPs were observed in mutants of cep-1, hus-1, egl-1, ced-3, -4, and -9. Consequently, the augmentation of reproductive toxicity resulting from aPS-MPs exposure was attributed to DNA damage-triggered cellular apoptosis. Additionally, the EGL-1-CEP-1-HUS-1-CED-3-CED-4-CED-9 signaling pathway was identified as a key regulator of germline apoptosis in nematodes. Our study provides insights into potential environmental risk of aPS-MPs with H2O2 on environmental organisms.

4.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734097

RESUMO

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Assuntos
Bifenil Polibromatos , Animais , Camundongos , Feminino , Bifenil Polibromatos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poluentes Ambientais/toxicidade
5.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718725

RESUMO

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Assuntos
Molibdênio , Molibdênio/urina , Molibdênio/toxicidade , Molibdênio/análise , Humanos , China/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Cistatina C , Medição de Risco , Poluentes Ambientais/urina , Poluentes Ambientais/análise , Adulto Jovem , Teorema de Bayes , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Idoso , Indústria Química , Rim/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos
6.
Sci Total Environ ; 929: 172646, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653417

RESUMO

Agroforestry waste and cow manure pollute the environment, of which, agroforestry waste is difficult to degrade. Compost is an effective way to dispose agroforestry waste; however, the low degradation efficiency of lignocellulose in agroforestry waste affects the process of composting humification. This study investigated lignocellulose degradation and composting humification in full-size apple wood and cow manure composting processes by applying different pretreatments (acidic, alkaline, and high-temperature) to apple wood. Simultaneously, physicochemical characterization and metagenome sequencing were combined to analyze the function of carbohydrate-active enzymes database (CAZy). Therefore, microbial communities and functions were linked during the composting process and the lignocellulose degradation mechanism was elaborated. The results showed that the addition of apple wood increased the compost humus (HS) yield, and pretreatment of apple wood enhanced the lignocellulose degradation during composting processes. In addition, pretreatment improved the physicochemical properties, such as temperature, pH, electric conductivity (EC), ammonium nitrogen (NH4+), and nitrate nitrogen (NO3-) in the compost, of which, acid treated apple wood compost (AcAWC) achieved the highest temperature of 58.4 °C, effectively promoting nitrification with NO3- ultimately reaching 0.127 g/kg. In all composts, microbial networks constructed a high proportion of positively correlated connections, and microorganisms promoted the composting process through cooperation. The proportions of glycosyltransferase (GT) and glycoside hydrolase (GH) promoted the separation and degradation of lignocellulose during composting to form HS. Notably, the adverse effects of the alkali-treated apple wood compost on bacteria were greater. AcAWC showed significant correlations between bacterial and fungal communities and both lignin and hemicellulose, and had more biomarkers associated with lignocellulose degradation and humification. The lignin degradation rate was 24.57 % and the HS yield increased by 27.49 %. Therefore, AcAWC has been confirmed to enhance lignocellulose degradation and promote compost humification by altering the properties of the apple wood and establishing a richer microbial community.


Assuntos
Compostagem , Lignina , Malus , Esterco , Madeira , Lignina/metabolismo , Animais , Bovinos , Biomassa , Substâncias Húmicas , Biodegradação Ambiental
7.
Environ Pollut ; 347: 123671, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442824

RESUMO

Considerable research has been conducted to evaluate microplastics (MPs) as vehicles for the transfer of hazardous pollutants in organisms. However, little effort has been devoted to the chemical release of hazardous additive-derived pollutants from MPs in gut simulations. This study looked at the leaching kinetics of organophosphate esters (OPFRs) from polypropylene (PP) and polystyrene (PS) MPs in the presence of gut surfactants, specifically sodium taurocholate, at two biologically relevant temperatures for marine organisms. Diffusion coefficients of OPFRs ranged from 1.71 × 10-20 to 4.04 × 10-18 m2 s-1 in PP and 2.91 × 10-18 to 1.51 × 10-15 m2 s-1 in PS. The accumulation factors for OPFRs in biota-plastic and biota-sediment interactions ranged from 1.52 × 10-3-69.1 and 0.02-0.7, respectively. Based on B3LYP/6-31G (d,p) calculations, the biodynamic model analysis revealed a slight increase in the bioaccumulation of OPFRs at a minor dose of 0.05% MPs. However, at higher concentrations (0.5% and 5% MPs), there was a decrease in bioaccumulation compared to the lower concentration for most OPFR compounds. In general, the ingestion of PE MPs notably contributed to the bioaccumulation of OPFRs in lugworms, whereas the contribution of PP and PS MPs was minimal. This could vary among sites exhibiting varying levels of MP concentrations or MPs displaying stronger affinities towards chemicals.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/metabolismo , Plásticos , Bioacumulação , Poliestirenos/metabolismo , Organofosfatos , Polipropilenos
8.
Thorax ; 79(7): 615-623, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38388490

RESUMO

BACKGROUND: There is growing interest in the joint effects of hazardous trace elements (HTEs) on lung function deficits, but the data are limited. This is a critical research gap given increased global industrialisation. METHODS: A national cross-sectional study including spirometry was performed among 2112 adults across 11 provinces in China between 2020 and 2021. A total of 27 HTEs were quantified from urine samples. Generalised linear models and quantile-based g-computation were used to explore the individual and joint effects of urinary HTEs on lung function, respectively. RESULTS: Overall, there were negative associations between forced expiratory volume in 1 s (FEV1) and urinary arsenic (As) (z-score coefficient, -0.150; 95% CI, -0.262 to -0.038 per 1 ln-unit increase), barium (Ba) (-0.148, 95% CI: -0.258 to -0.039), cadmium (Cd) (-0.132, 95% CI: -0.236 to -0.028), thallium (Tl) (-0.137, 95% CI: -0.257 to -0.018), strontium (Sr) (-0.147, 95% CI: -0.273 to -0.022) and lead (Pb) (-0.121, 95% CI: -0.219 to -0.023). Similar results were observed for forced vital capacity (FVC) with urinary As, Ba and Pb and FEV1/FVC with titanium (Ti), As, Sr, Cd, Tl and Pb. We found borderline associations between the ln-quartile of joint HTEs and decreased FEV1 (-20 mL, 95% CI: -48 to +8) and FVC (-14 mL, 95% CI: -49 to+2). Ba and Ti were assigned the largest negative weights for FEV1 and FVC within the model, respectively. CONCLUSION: Our study investigating a wide range of HTEs in a highly polluted setting suggests that higher urinary HTE concentrations are associated with lower lung function, especially for emerging Ti and Ba, which need to be monitored or regulated to improve lung health.


Assuntos
Exposição Ambiental , Oligoelementos , Humanos , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , China/epidemiologia , Oligoelementos/urina , Adulto , Volume Expiratório Forçado , Espirometria , Capacidade Vital , Pulmão/fisiopatologia , Idoso
9.
Chemosphere ; 350: 141142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185427

RESUMO

Tetrachlorobisphenol A (TCBPA) has been used as an alternative flame retardant in various fields. However, the long-term effects of TCBPA on the nervous system remain unclear. Thus, Caenorhabditis elegans (L4 larvae) were selected as a model animal to investigate the neurotoxic effects and underlying mechanisms after 10 d of TCBPA exposure. Exposure to TCBPA (0.01-100 µg/L) decreased locomotive behavior in a concentration-dependent manner. In addition, reactive oxygen species (ROS) formation and lipofuscin accumulation were significantly increased, and the expression of sod-3 was upregulated in the exposed nematodes, indicating that TCBPA exposure induced oxidative damage. Furthermore, 100 µg/L TCBPA exposure caused a reduction in dopamine and serotonin levels, and damage in dopaminergic and serotoninergic neurons, which was further confirmed by the downregulated expression of related genes (e.g., dop-1, dop-3, cat-1, and mod-1). Molecular docking analysis demonstrated the potential of TCBPA to bind to the neurotransmitter receptor proteins DOP-1, DOP-3, and MOD-1. These results indicate that chronic exposure to TCBPA induces neurotoxic effects on locomotive behavior, which is associated with oxidative stress and damage to dopaminergic and serotoninergic neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Síndromes Neurotóxicas , Bifenil Polibromatos , Animais , Caenorhabditis elegans , Simulação de Acoplamento Molecular , Estresse Oxidativo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Síndromes Neurotóxicas/etiologia , Neurônios/metabolismo
10.
J Hazard Mater ; 465: 133183, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070267

RESUMO

Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) are widely distributed brominated flame retardants. While TBBPA has been demonstrated to stimulate adipogenesis, TBBPS is also under suspicion for potentially inducing comparable effects. In this study, we conducted a non-targeted metabolomics to examine the metabolic changes in 3T3-L1 cells exposed to an environmentally relevant dose of TBBPA or TBBPS. Our findings revealed that 0.1 µM of both TBBPA and TBBPS promoted the adipogenesis of 3T3-L1 preadipocytes. Multivariate analysis showed significant increases in glycerophospholipids, sphingolipids, and steroids relative levels in 3T3-L1 cells exposed to TBBPA or TBBPS at the final stage of preadipocyte differentiation. Metabolites set composed of glycerophospholipids was found to be highly effective predictors of adipogenesis in 3T3-L1 cells exposed to TBBPA or TBBPS (revealed from the receiver operating characteristic curve with an area under curve > 0.90). The results from metabolite set enrichment analysis suggested both TBBPA and TBBPS exposures significantly perturbed steroid biosynthesis in adipocytes. Moreover, TBBPS additionally disrupted the sphingolipid metabolism in the adipocytes. Our study presents new insights into the obesogenic effects of TBBPS and provides valuable information about the metabolites associated with adipogenesis induced by TBBPA or TBBPS.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Bifenil Polibromatos , Animais , Camundongos , Células 3T3-L1 , Diferenciação Celular , Glicerofosfolipídeos/farmacologia
11.
Sci Total Environ ; 912: 169037, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056667

RESUMO

Tetrabromobisphenol A (TBBPA), a ubiquitously used commercial brominated flame retardant (BFR), has been widely detected in aquatic environments, and has aroused much attention due to its potential adverse effects on aquatic organisms. However, current research on the environmental fate and transport of TBBPA in the sediment-dissolved organic carbon (DOC)-water polyphase system is lacking. In this study, the sorption behavior of TBBPA in a water-DOC-sediment system was investigated using the direct-immersion solid-phase microextraction (DI-SPME) method, and the free dissolved concentration (Cw-SPME) and DOC adsorption concentration (CDOC) of TBBPA in water were measured by applying this DI-SPME approach. In addition, the effects of pH, ionic strength, and soluble organic concentration on the adsorption of TBBPA in the multiphase system were evaluated. The adsorption kinetics experimental results show that the adsorption behavior of TBBPA on sediments conforms to a linear model, suggesting that it could be mainly absorbed by sediments. The solid-water partition coefficient (Kd) of TBBPA was artificially reduced 1.54 times using the traditional liquid-liquid extraction method because the sorption behavior of the DOC was ignored, which could be accurately corrected using the DI-SPME method. The logKd and logKOC of TBBPA in the multiphase system were 4.12 ± 0.25 and 6.48 ± 0.25, respectively. Finally, the interference experiment revealed that the sorption behavior of TBBPA was affected by the pH, ionic strength (calcium ion), and humic acid concentration, apart from the lead ion concentration itself.

12.
J Hazard Mater ; 465: 133228, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141303

RESUMO

The brominated flame retardant decabromodiphenyl ethane (DBDPE) has been extensively used following restrictions on BDE-209 and thus, been frequently detected in aquatic environment. However, information on impact of DBDPE on fish development and the potential mechanisms remains scarce. In present study, developing zebrafish were employed as a study model. Embryos were exposed until 5 d to DBDPE at concentrations of 0, 3, 30, and 300 µg/L, following which the impact on larval development was investigated. DBDPE bioaccumulation and locomotor hyperactivity were observed in developing zebrafish exposed to DBDPE. Transcriptome and bioinformatics analyses indicated that pathways associated with cardiac muscle contraction and retinol metabolism were notably affected. The mechanisms of DBDPE to induce locomotor abnormality were further investigated by analyzing levels of retinol and retinol metabolites, eye and heart histology, heart rates, and ATPase activity. Our results indicate that locomotor hyperactivity observed in larvae exposed to DBDPE results from abnormal heartbeat, which in turn is attributable to inhibition of Na+/K+-ATPase activity. Furthermore, DBDPE did not change larval eye histology and contents of retinoid (retinol, retinal, and retinoic acid). This study provides insight into the mechanisms underlying DBDPE-induced developmental toxicity and highlights the need for addressing the environmental risks for aquatic organisms.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Larva , Vitamina A , Transcriptoma , Bromobenzenos/toxicidade , Éteres Difenil Halogenados/toxicidade , Retardadores de Chama/toxicidade , Adenosina Trifosfatases
13.
J Hazard Mater ; 459: 132222, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37557043

RESUMO

We simultaneously assessed the associations for a range of outdoor environmental exposures with prevalent tuberculosis (TB) cases in a population-based health program with 1940,622 participants ≥ 15 years of age. TB status was confirmed through bacteriological and clinical assessment. We measured 14 outdoor environmental exposures at residential addresses. An exposome-wide association study (ExWAS) approach was used to estimate cross-sectional associations between environmental exposures and prevalent TB, an adaptive elastic net model (AENET) was implemented to select important exposure(s), and the Extreme Gradient Boosting algorithm was subsequently applied to assess their relative importance. In ExWAS analysis, 12 exposures were significantly associated with prevalent TB. Eight of the exposures were selected as predictors by the AENET model: particulate matter ≤ 2.5 µm (odds ratio [OR]=1.01, p = 0.3295), nitrogen dioxide (OR=1.09, p < 0.0001), carbon monoxide (OR=1.19, p < 0.0001), and wind speed (OR=1.08, p < 0.0001) were positively associated with the odds of prevalent TB while sulfur dioxide (OR=0.95, p = 0.0017), altitude (OR=0.97, p < 0.0001), artificial light at night (OR=0.98, p = 0.0001), and proportion of forests, shrublands, and grasslands (OR=0.95, p < 0.0001) were negatively associated with the odds of prevalent TB. Air pollutants had higher relative importance than meteorological and geographical factors, and the outdoor environment collectively explained 11% of TB prevalence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Expossoma , Tuberculose , Humanos , Adulto , Estudos Transversais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Tuberculose/epidemiologia , Material Particulado/análise , China/epidemiologia , Poluição do Ar/análise
14.
Sci Total Environ ; 900: 165874, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517734

RESUMO

Microplastics (MPs) are ubiquitous environmental contaminants that cause neurotoxicity in various organisms. MPs are typically affected by light irradiation and undergo photoaging. However, the neurotoxic effects of photoaged polystyrene (P-PS) and its underlying mechanisms remain unclear. In this study, locomotion behaviors, neuronal development, neurotransmitter levels, and the expression of neurotransmission-related genes were investigated in Caenorhabditis elegans exposed to P-PS at environment-relevant concentrations (0.1-100 µg/L). The characterization results showed that photoaging accelerated the aging process and changed the physicochemical properties of the MPs. The toxicity results suggested that exposure to 1-100 µg/L P-PS caused more severe neurotoxicity than virgin polystyrene (V-PS) with endpoints of head thrashes, body bends, wavelength, and mean amplitude. Exposure to P-PS also altered the fluorescence intensity and neurodegeneration percentage of serotonergic, glutamatergic, dopaminergic, and aminobutyric acid (GABA) in transgenic nematodes. Similarly, significant reductions in the levels of these neurotransmitters were also observed. Based on Pearson's correlation, locomotion behaviors were negatively correlated with the neurotransmission of serotonin, glutamate, dopamine, and GABA. Further investigation suggested that the expression of neurotransmitter-related genes (e.g., tph-1, eat-4, and unc-46) was significantly altered in the nematodes. Collectively, the neurotoxic effects of P-PS were attributed to abnormal neurotransmission. This study highlights the potential toxicity of MPs photoaged under environmentally relevant conditions.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Poliestirenos/metabolismo , Dopamina , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo
15.
Environ Sci Technol ; 57(25): 9150-9162, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37319360

RESUMO

The significant health implications of e-waste toxicants have triggered the global tightening of regulation on informal e-waste recycling sites (ER) but with disparate governance that requires effective monitoring. Taking advantage of the opportunity to implement e-waste control in the Guiyu ER since 2015, we investigated the temporal variations in levels of oxidative DNA damage, 25 volatile organic compound metabolites (VOCs), and 16 metals/metalloids (MeTs) in urine in 918 children between 2016 and 2021 to demonstrate the effectiveness of e-waste control in reducing population exposure risks. The hazard quotients of most MeTs and levels of 8-hydroxy-2'-deoxyguanosine in children decreased significantly during this time, indicating that e-waste control effectively reduces the noncarcinogenic risks of MeT exposure and levels of oxidative DNA damage. Using mVOC-derived indexes as a feature, a bagging-support vector machine algorithm-based machine learning model was constructed to predict the extent of e-waste pollution (EWP). The model exhibited excellent performance with accuracies >97.0% in differentiating between slight and severe EWP. Five simple functions established using mVOC-derived indexes also had high accuracy in predicting the presence of EWP. These models and functions provide a novel human exposure monitoring-based approach for assessing e-waste governance or the presence of EWP in other ERs.


Assuntos
Resíduo Eletrônico , Metaloides , Compostos Orgânicos Voláteis , Criança , Humanos , Metaloides/análise , Estudos Longitudinais , Metais , Reciclagem , China
16.
Ecotoxicol Environ Saf ; 258: 114969, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167736

RESUMO

2,2'-Dibromobisphenol A (2,2'-DiBBPA) is frequently detected in the environment. However, the mobility of 2,2'-DiBBPA in the soil environment is poorly understood. The present study examined the effects of soil components such as the NaClO-resistant fraction, dithionite-citrate-bicarbonate -demineralized fraction, humin fraction, black carbon, DOC-removed fraction, exogenous dissolved organic carbon and heavy metal cations on the adsorption of 2,2'-DiBBPA on several types of agricultural soils. The adsorption isotherms on soils and soil components were well fitted to the linear isotherm equation. 2,2'-DiBBPA sorption onto soils was dominated by soil organic matter content (SOM) and affected by exogenous dissolved organic carbon. Linear regression relationships between adsorption capacity (Kd) and soil characteristics were evaluated to predict partitioning of 2,2'-DiBBPA. Black carbon played a predominant role in the adsorption of 2,2'-DiBBPA. Heavy metal ions significantly inhibited the adsorptive behavior of 2,2'-DiBBPA under alkaline conditions. Semiempirical linear relationships were observed between biota-sediment accumulation factors (1.18-2.47)/logarithm of bioconcentration factors (BCFs, 2.49-2.52) of 2,2'-DiBBPA in lugworms and Kd. These results allow for the prediction of the bioaccumulation of 2,2'-DiBBPA in other soils. Furthermore, values of log BCF > 1.0 indicate the preferential bioaccumulation of 2,2'-DiBBPA in biota. These data are of significance for understanding the migration of 2,2'-DiBBPA in agricultural soils and bioaccumulation in organisms.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Bioacumulação , Poluentes do Solo/análise , Matéria Orgânica Dissolvida , Adsorção , Carbono
17.
Environ Sci Technol ; 57(21): 7938-7949, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37202343

RESUMO

Obesity is prevalent in rural areas of China, and there are inconsistent findings regarding the association between metal(loid) exposure and the risk of obesity. Abdominal obesity (AOB), which reflects visceral fat abnormity, is a crucial factor in studying obesity-related diseases. We conducted a study measuring 20 urinary metal(loid)s, 13 health indicators, and the waist circumference (WC) in 1849 participants from 10 rural areas of China to investigate their relationships. In the single exposure models, we found that urinary chromium (Cr) was significantly associated with the odds of having AOB [adjusted odds ratio (OR) = 1.81 (95% confidence interval (CI): 1.24, 2.60)]. In the mixture exposure models, urinary Cr consistently emerged as the top contributor to AOB, while the overall effect of mixed metal(loid)s was positive toward the odds of having AOB [adjusted OR: 1.33 (95% CI: 1.00, 1.77)], as revealed from the quantile g-computation model. After adjusting for the effects of other metal(loid)s, we found that the elevation of apolipoprotein B and systolic blood pressure significantly mediated the association between urinary Cr and the odds of having AOB by 9.7 and 19.4%, respectively. Our results suggest that exposure to metal(loid)s is a key factor contributing to the prevalence of AOB and WC gain in rural areas of China.


Assuntos
Metaloides , Metais Pesados , Humanos , Obesidade Abdominal/epidemiologia , Metais/análise , Obesidade/epidemiologia , Cromo , China/epidemiologia , Gordura Abdominal/química , Medição de Risco , Monitoramento Ambiental/métodos
18.
J Hazard Mater ; 455: 131598, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37187124

RESUMO

The decade-long effort to control e-waste in China has made significant progress from haphazard disposal to organized recycling, but environmental research suggests that exposure to volatile organic compounds (VOCs) and metals/metalloids (MeTs) still poses plausible health risks. To investigate the exposure risk faced by children and identify corresponding priority control chemicals, we evaluated the carcinogenic risk (CR), non-CR, and oxidative DNA damage risks of VOCs and MeTs exposure in 673 children from an e-waste recycling area (ER) by measuring urinary exposure biomarker levels. The ER children were generally exposed to high levels of VOCs and MeTs. We observed distinctive VOCs exposure profiles in ER children. In particular, the 1,2-dichloroethane/ethylbenzene ratio and 1,2-dichloroethane were promising diagnostic indexes for identifying e-waste pollution due to their high accuracy (91.4%) in predicting e-waste exposure. Exposure to acrolein, benzene, 1,3-butadiene, 1,2-dichloroethane, acrylamide, acrylonitrile, arsenic, vanadium, copper, and lead posed considerable CR or/and non-CR and oxidative DNA damage risks to children, while changing personal lifestyles, especially enhancing daily physical exercise, may facilitate mitigating these chemical exposure risks. These findings highlight that the exposure risk of some VOCs and MeTs is still non-negligible in regulated ER, and these hazardous chemicals should be controlled as priorities.


Assuntos
Poluentes Atmosféricos , Resíduo Eletrônico , Poluentes Ambientais , Metaloides , Compostos Orgânicos Voláteis , Humanos , Criança , Monitoramento Ambiental , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/análise , Medição de Risco , Poluentes Atmosféricos/análise , Metais/toxicidade , China
19.
Sci Total Environ ; 887: 164023, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37172852

RESUMO

BACKGROUND: Effects of green space on human health have been well-documented in western, high-income countries. Evidence for similar effects in China is limited. Moreover, the underlying mechanisms linking green space and mortality are yet to be established. We therefore conducted a nation-wide study to assess the association between green space and mortality in China using a difference-in-difference approach, which applied a causal framework and well controlled unmeasured confounding. In addition, we explored whether air pollution and air temperature could mediate the association. METHODS: In this analysis, we collected data on all-cause mortality and sociodemographic characteristics for each county in China from the 2000 and 2010 censuses and the 2020 Statistical Yearbook. Green space exposure was assessed using county-level normalized difference vegetation index (NDVI) and the percentage of green space (forest, grasslands, shrub land and wetland). We applied a difference-in-differences approach to evaluate the association between green space and mortality. We also performed mediation analysis (by air pollution and air temperature). RESULTS: Our sample consisted of 2726 counties in 2000 and 2010 as well as 1432 counties in 2019. In the 2000 versus 2019 comparison, a 0.1 unit increase in NDVI was associated with a 2.4 % reduction in mortality [95 % confidence interval (CI) 0.4-4.3 %], and a 10 % increase in percentage of green space was associated with a 4.7 % reduction (95 % CI 0-9.2 %) in mortality. PM2.5 and air temperature mediated 0.3 % to 12.3 % of the associations. CONCLUSIONS: Living in greener counties may be associated with lower risk of mortality in China. These findings could indicate the potential of a population-level intervention to reduce mortality in China, which has important public health implications at the county level.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Parques Recreativos , Poluição do Ar/análise , China , Renda , Florestas , Material Particulado/análise , Exposição Ambiental/análise , Poluentes Atmosféricos/análise
20.
Sci Total Environ ; 882: 163100, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023822

RESUMO

BACKGROUND: Arsenic (As), cadmium (Cd) and copper (Cu) are hazardous for kidney function, while the effects of selenium (Se) and zinc (Zn) were unexplored for the narrow safe range of intake. Interactions exists between these multiple metal/metalloid exposures, but few studies have investigated the effects. METHODS: A cross-sectional survey was performed among 2210 adults across twelve provinces in China between 2020 and 2021. Urinary As, Cd, Cu, Se and Zn were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Serum creatinine (Scr) and N-acetyl-beta-D glucosaminidases (urine NAG) were quantified in serum and urine, respectively. Kidney function was evaluated by the estimated glomerular filtration rate (eGFR). We employed logistic regression and Bayesian kernel machine regression (BKMR) models to explore the individual and joint effects of urinary metals/metalloids on the risk of impaired renal function (IRF) or chronic kidney disease (CKD), respectively. RESULTS: Association was found between As (OR = 1.24, 95 % CI: 1.03, 1.48), Cd (OR = 1.65, 95 % CI: 1.35, 2.02), Cu (OR = 1.90, 95 % CI: 1.59, 2.29), Se (OR = 1.51, 95 % CI: 1.24, 1.85) and Zn (OR = 1.33, 95 % CI: 1.09, 1.64) and the risk of CKD. Moreover, we observed association between As (OR = 1.18, 95 % CI: 1.07, 1.29), Cu (OR = 1.14, 95 % CI: 1.04, 1.25), Se (OR = 1.15, 95 % CI: 1.06, 1.26) and Zn (OR = 1.12, 95 % CI: 1.02, 1.22) and the risk of IRF. Additionally, it was found that Se exposure may strength the association of urinary As, Cd and Cu with IRF. Furthermore, it is worth noting that Se and Cu contributed greatest to the inverse association in IRF and CKD, respectively. CONCLUSION: Our findings suggested that metal/metalloid mixtures were associated with kidney dysfunction, Se and Cu were inverse factors. Additionally, interactions between them may affect the association. Further studies are needed to assess the potential risks for metal/metalloid exposures.


Assuntos
Arsênio , Metaloides , Insuficiência Renal Crônica , Selênio , Adulto , Humanos , Estudos Transversais , Cádmio , Teorema de Bayes , Metais , Arsênio/urina , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA