Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 9(87): eadh2479, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381840

RESUMO

Cerebral aneurysms and brain tumors are leading life-threatening diseases worldwide. By deliberately occluding the target lesion to reduce the blood supply, embolization has been widely used clinically to treat cerebral aneurysms and brain tumors. Conventional embolization is usually performed by threading a catheter through blood vessels to the target lesion, which is often limited by the poor steerability of the catheter in complex neurovascular networks, especially in submillimeter regions. Here, we propose magnetic soft microfiberbots with high steerability, reliable maneuverability, and multimodal shape reconfigurability to perform robotic embolization in submillimeter regions via a remote, untethered, and magnetically controllable manner. Magnetic soft microfiberbots were fabricated by thermal drawing magnetic soft composite into microfibers, followed by magnetizing and molding procedures to endow a helical magnetic polarity. By controlling magnetic fields, magnetic soft microfiberbots exhibit reversible elongated/aggregated shape morphing and helical propulsion in flow conditions, allowing for controllable navigation through complex vasculature and robotic embolization in submillimeter regions. We performed in vitro embolization of aneurysm and tumor in neurovascular phantoms and in vivo embolization of a rabbit femoral artery model under real-time fluoroscopy. These studies demonstrate the potential clinical value of our work, paving the way for a robotic embolization scheme in robotic settings.


Assuntos
Neoplasias Encefálicas , Aneurisma Intracraniano , Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Coelhos , Procedimentos Cirúrgicos Robóticos/métodos , Aneurisma Intracraniano/terapia , Fenômenos Magnéticos
2.
Front Robot AI ; 10: 1281362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149059

RESUMO

Introduction: Electromagnetically controlled small-scale robots show great potential in precise diagnosis, targeted delivery, and minimally invasive surgery. The automatic navigation of such robots could reduce human intervention, as well as the risk and difficulty of surgery. However, it is challenging to build a precise kinematics model for automatic robotic control because the controlling process is affected by various delays and complex environments. Method: Here, we propose a learning-based intelligent trajectory planning strategy for automatic navigation of magnetic robots without kinematics modeling. The Long Short-Term Memory (LSTM) neural network is employed to establish a global mapping relationship between the current sequence in the electromagnetic actuation system and the trajectory coordinates. Result: We manually control the robot to move on a curved path 50 times to form the training database to train the LSTM network. The trained LSTM network is validated to output the current sequence for automatically controlling the magnetic robot to move on the same curved path and the tortuous and branched new paths in simulated vascular tracks. Discussion: The proposed trajectory planning strategy is expected to impact the clinical applications of robots.

3.
Adv Mater ; 34(52): e2200985, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35820163

RESUMO

The application of wearable devices is promoting the development toward digitization and intelligence in the field of health. However, the current smart devices centered on human health have disadvantages such as weak perception, high interference degree, and unfriendly interaction. Here, an intelligent health agent based on multifunctional fibers, with the characteristics of autonomy, activeness, intelligence, and perceptibility enabling health services, is proposed. According to the requirements for healthcare in the medical field and daily life, four major aspects driven by intelligent agents, including health monitoring, therapy, protection, and minimally invasive surgery, are summarized from the perspectives of materials science, medicine, and computer science. The function of intelligent health agents is realized through multifunctional fibers as sensing units and artificial intelligence technology as a cognitive engine. The structure, characteristics, and performance of fibers and analysis systems and algorithms are reviewed, while discussing future challenges and opportunities in healthcare and medicine. Finally, based on the above four aspects, future scenarios related to health protection of a person's life are presented. Intelligent health agents will have the potential to accelerate the realization of precision medicine and active health.


Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Inteligência
4.
Science ; 373(6555): 692-696, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353954

RESUMO

Incorporating passive radiative cooling structures into personal thermal management technologies could effectively defend humans against intensifying global climate change. We show that large-scale woven metafabrics can provide high emissivity (94.5%) in the atmospheric window and high reflectivity (92.4%) in the solar spectrum because of the hierarchical-morphology design of the randomly dispersed scatterers throughout the metafabric. Through scalable industrial textile manufacturing routes, our metafabrics exhibit desirable mechanical strength, waterproofness, and breathability for commercial clothing while maintaining efficient radiative cooling ability. Practical application tests demonstrated that a human body covered by our metafabric could be cooled ~4.8°C lower than one covered by commercial cotton fabric. The cost-effectiveness and high performance of our metafabrics present substantial advantages for intelligent garments, smart textiles, and passive radiative cooling applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA