Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(2): e2300223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37330642

RESUMO

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

2.
J Am Chem Soc ; 145(27): 14912-14921, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37338220

RESUMO

Incorporating heteroatoms, such as nitrogen, oxygen, and/or sulfur atoms, into cycloarenes can effectively regulate their molecular geometries and (opto)electronic properties. However, the rarity of cycloarenes and heterocycloarenes limits the further exploitation of their applications. Herein, we designed and synthesized the first examples of boron and nitrogen (BN)-doped cycloarenes (BN-C1 and BN-C2) via one-pot intramolecular electrophilic borylation of imine-based macrocycles. BN-C2 adopts a bowl-shaped conformation, while BN-C1 possesses a planar geometry. Accordingly, the solubility of BN-C2 was significantly improved by replacing two hexagons in BN-C1 with two N-pentagons, due to the creation of distortions away from planarity. Various experiments and theoretical calculations were carried out for heterocycloarenes BN-C1 and BN-C2, demonstrating that the incorporated BN bonds diminish the aromaticity of 1,2-azaborine units and their adjacent benzenoid rings but preserve the dominant aromatic properties of pristine kekulene. Importantly, when two additional electron-rich nitrogen atoms were introduced, the highest occupied molecular orbital energy level of BN-C2 was elaborately lifted compared with that of BN-C1. As a result, the energy-level alignment of BN-C2 with the work function of the anode and the perovskite layer was suitable. Therefore, for the first time, heterocycloarene (BN-C2) was explored as a hole-transporting layer in inverted perovskite solar cell devices, in which the power conversion efficiency reached 14.4%.

3.
Adv Mater ; 33(7): e2006435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393159

RESUMO

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

4.
J Colloid Interface Sci ; 534: 1-11, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196196

RESUMO

The efficient utilization of solar energy for environmental cleaning has attracted great attention, where the key is to efficiently harvest the visible and near-infrared (NIR) light which occupies approximately 95% of the solar light energy. Recently, black phosphorus (BP), as a new staring 2D material, has been extensively studied as photocatalytic materials due to its broad light absorption and tunable bandgap. Herein, we report a novel ternary nanocomposite, BP-Ag/TiO2, prepared through controlled deposition of Ag clusters on the surface of TiO2 nanocrystals and then incorporated to BP nanosheets. The BP-Ag/TiO2 nanocomposite has shown excellent photocatalytic activity towards the degradation of methylene blue (MB) under visible and NIR light irradiation. About 100% and even 25% of MB was degraded in 85 min under >420 nm and >780 nm irradiation, respectively. The enhanced photocatalytic activity of BP-Ag/TiO2 nanocomposite was mainly ascribed to the sensitization of BP nanosheets by fully harvest of solar light and high electron-hole separation efficiency. We believe that the BP-Ag/TiO2 nanocomposite will be an effective photofunctional material in full-spectrum solar energy conversion and opens up a new door for the development of solar light driven photocatalysts for the remediation of environmental pollution.

5.
Small ; 14(50): e1803350, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417558

RESUMO

Hybrid perovskite thin films are prone to producing surface vacancies during the film formation, which degrade the stability and photovoltaic performance. Passivation via post-treatment can heal these defects, but present methods are slightly destructive to the bulk of 3D perovskite due to the solvent effect, which hinders fabrication reproducibility. Herein, nondestructive surface/interface passivation using 4-fluoroaniline (FAL) is established. FAL is not only an effective antisolvent candidate for surface modification, but also a large dipole molecule (2.84 Debye) with directional field for charge separation. Density functional theory calculation reveals that the nondestructive properties are attributed to both the conjugated amine in aromatic ring and the para-fluoro-substituent. A hot vapor assisted colloidal process is employed for the post-treatment. The molecular passivation yields an ultrathin protection layer with a hydrophobic fluoro-substituent tail and thus enhances the stability and optoelectronic properties. FAL post-treated perovskite solar cell (PSC) delivers a 20.48% power conversion efficiency under ambient conditions. Micro-photoluminescence reveals that passivation activates the dark defective state at the surface and interface, delivering the impact picture of boundary on the local carriers. This work demonstrates a generic nondestructive chemical approach for improving the performance and stability of PSCs.

6.
Adv Mater ; 30(38): e1803244, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30091807

RESUMO

Antimonene-based 2D materials are attracting increasing research interest due to their superior physicochemical properties and promising applications in next-generation electronics and optoelectronics devices. However, the semiconductor properties of antimonene are still at the theoretical simulation stage and are not experimentally verified, significantly restricting its applications in specific areas. In this study, the semiconductor properties of monolayer antimonene nanosheets are experimentally verified. It is found that the obtained semiconductive antimonene nanosheets (SANs) exhibit indirect bandgap properties, with photoluminescence (PL) bandgap at about 2.33 eV and PL lifetime of 4.3 ns. Moreover, the obtained SANs are ideal for the hole extraction layer in planar inverted perovskite solar cells (PVSCs) and significantly enhance the device performance due to fast hole extraction and efficient hole transfer at the perovskite/hole transport layer interface. Overall, these findings look promising for the future prospects of antimonene in electronics and optoelectronics.

7.
Small ; 14(19): e1704007, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29638030

RESUMO

Organic-inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (VOC ). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.

8.
Nanoscale Res Lett ; 10: 137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852428

RESUMO

In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 µs to about 30 µs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA