Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116189, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461579

RESUMO

Throughout the literature, the word "heavy metal" (HM) has been utilized to describe soil contamination; in this context, we characterize it as those elements with a density greater than 5 g per cubic centimeter. Contamination is one of the major global health concerns, especially in China. China's rapid urbanization over the past decades has caused widespread urban water, air, and soil degradation. This study provides a complete assessment of the soil contamination caused by heavy metals in China's mining and smelting regions. The study of heavy metals (HMs) includes an examination of their potential adverse impacts, their origins, and strategies for the remediation of soil contaminated by heavy metals. The presence of heavy metals in soil can be linked to both natural and anthropogenic processes. Studies have demonstrated that soils contaminated with heavy metals present potential health risks to individuals. Children are more vulnerable to the effects of heavy metal pollution than adults. The results highlight the significance of heavy metal pollution caused by mining and smelting operations in China. Soil contaminated with heavy metals poses significant health concerns, both carcinogenic and non-carcinogenic, particularly to children and individuals living in heavily polluted mining and smelting areas. Implementing physical, chemical, and biological remediation techniques is the most productive approach for addressing heavy metal-contaminated soil. Among these methods, phytoremediation has emerged as a particularly advantageous option due to its cost-effectiveness and environmentally favorable characteristics. Monitoring heavy metals in soils is of utmost importance to facilitate the implementation of improved management and remediation techniques for contaminated soils.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , China , Biodegradação Ambiental , Medição de Risco
2.
mSystems ; 8(6): e0050523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37882797

RESUMO

IMPORTANCE: Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Recifes de Corais , Antozoários/metabolismo , Bactérias/genética , Metabolismo Energético
3.
Artigo em Inglês | MEDLINE | ID: mdl-37750757

RESUMO

Coral reef ecosystems are facing decline due to climate change, overfishing, habitat destruction and pollution. Bacteria play an essential role in maintaining the stability of coral reef ecosystems, influencing the well-being and fitness of coral hosts. The exploitation of coral probiotics has become an urgent issue. A short-rod shaped aerobic bacterium, designated NTR19T, was isolated in a healthy coral Turbinaria peltata from Daya Bay, Shenzhen, PR China. Its cells were Gram-negative, motile with a polar flagellum. The activities of catalase and oxidase were positive. Strain NTR19T grew at 10-41 °C (optimum, 28 °C), with NaCl concentrations of 0-4 % (w/v; optimum, 0.5 %) and at pH 5.0-9.5 (optimum, pH 7.0-7.5). The predominant fatty acids (>10 %) were summed feature 8 (57.6 %), C19 : 0 cyclo ω8c (12.6 %) and C16 : 0 (12.0 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid and phosphatidylcholine. The major respiratory quinone was Q-10. The draft genome was 4.68 Mbp with 61.2 mol% DNA G+C content. In total, 4477 coding sequences were annotated and there were 64 RNA genes. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between strain NTR19T and the related Neorhizobium species were 78.23-79.70% and 80.26-80.50 %, respectively. This strain encoded many proteins for the activities of catalase and oxidase in the genome. Strain NTR19T was clearly distinct from its closest neighbours Rhizobium oryzicola ACCC 05753T and Neorhizobium petrolearium ACCC 11238T with the 16S rRNA gene sequence similarity values of 96.86 and 96.36 %, respectively. The results of phylogenetic analysis, as well as ANI and AAI values, revealed that strain NTR19T belongs to Neorhizobium and was distinct from other species of this genus. The physiological, biochemical and chemotaxonomic characteristics also supported the species novelty of strain NTR19T. Thus, strain NTR19T is considered to be classified as a novel species in the genus Neorhizobium, for which the name Neorhizobium turbinariae sp. nov. is proposed. The type strain is NTR19T (=JCM 35342T=MCCC 1K07226T).


Assuntos
Antozoários , Rhizobiaceae , Animais , Catalase , Conservação dos Recursos Naturais , Ecossistema , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Pesqueiros , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Aminoácidos
4.
Microbiol Spectr ; 11(3): e0491022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191552

RESUMO

Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.


Assuntos
Antozoários , Gammaproteobacteria , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias , Recifes de Corais
5.
Sci Total Environ ; 892: 164258, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209734

RESUMO

Coral bleaching and coral reef degradation have been severely increased due to anthropogenic impacts, especially global warming. Studies have indicated the key role of host-microbiome symbiotic relationships for the coral holobiont health and development, although not all of the mechanisms of interaction have been fully explored. Here, we explore bacterial and metabolic shifts within coral holobionts under thermal stress, and its correlation with bleaching. Our results showed obvious signs of coral bleaching after 13 days of heating treatment, and a more-complex co-occurrence network was observed in the coral-associated bacterial community of the heating group. The bacterial community and metabolites changed significantly under thermal stress, and genera Flavobacterium, Shewanella and Psychrobacter increased from <0.1 % to 43.58 %, 6.95 % and 6.35 %, respectively. Bacteria potentially associated with stress tolerance, biofilm formation and mobile elements decreased from 80.93 %, 62.15 % and 49.27 % to 56.28 %, 28.41 % and 18.76 %, respectively. The differentially expressed metabolites of corals after heating treatment, such as Cer(d18:0/17:0), 1-Methyladenosine, Trp-P-1 and Marasmal, were associated with cell cycle regulation and antioxidant properties. Our results can contribute to our current understanding on the correlations between coral-symbiotic bacteria, metabolites and the coral physiological response to thermal stress. These new insights into the metabolomics of heat-stressed coral holobionts may expand our knowledge on the mechanisms underlying bleaching.


Assuntos
Antozoários , Microbiota , Animais , Branqueamento de Corais , Recifes de Corais , Antozoários/fisiologia , Resposta ao Choque Térmico , Bactérias , Simbiose
6.
Artigo em Inglês | MEDLINE | ID: mdl-36821368

RESUMO

A non-motile, rod-shaped, pink-pigmented bacterium NAR14T was isolated from coral Acropora digitifera from Daya Bay, Shenzhen, PR China. Cells were Gram-stain-negative, aerobic, catalase-positive and oxidase-negative. NAR14T grew with 0-6 % (w/v) NaCl (optimum, 2-4 %), at 10-41 °C (optimum, 28 °C) and at pH 4.0-9.5 (optimum, 5.0). The major respiratory quinone was Q-10. The predominant fatty acids (more than 10%) were summed feature 8 (65.6 %) and C16 : 0 (17.6%). The DNA G+C content of NAR14T was 73.6 %. The polar lipids of NAR14T comprised one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phosphatidylcholine, one aminolipid and three unknown polar lipids. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NAR14T formed a lineage within the genus Roseomonas of the family Acetobacteraceae, and it was distinct from the most closely related species Roseomonas wooponensis JCM 19527T and Roseomonas riguiloci JCM 17520T with the 16S rRNA gene sequence similarities of 94.61 and 93.98 %, respectively. Phenotypic characteristics (physiological, biochemical and chemotaxonomic) also supported the taxonomic novelty of this isolate. Thus, NAR14T is considered to represent a novel species within the genus Roseomonas, for which the name Roseomonas acroporae sp. nov. is proposed. The type strain is NAR14T (=KCTC 92174T = MCCC 1K07275T).


Assuntos
Antozoários , Methylobacteriaceae , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Ubiquinona/química , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química
7.
Environ Sci Pollut Res Int ; 30(14): 39750-39763, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602726

RESUMO

The combined effect of polyethylene (PE) microplastics and chromium (Cr(III)) on the scleractinian coral Acropora pruinosa (A. pruinosa) was investigated. The endpoints analysed in this study included the endosymbiont density, the chlorophyll a + c content, and the activity of enzymes involved in apoptosis (caspase-1, caspase-3), glycolysis (lactate dehydrogenase, LDH), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH) and electron transfer coenzyme (nicotinamide adenine dinucleotide, NAD+/NADH). During the 7-day exposure to PE and Cr(III) stress, the endosymbiont density and chlorophyll content decreased gradually. The caspase-1 and caspase-3 activities increased in the high-concentration Cr(III) exposure group. Furthermore, the LDH and G6PDH activities decreased significantly, and the NAD+/NADH was decreased significantly. In summary, the results showed that PE and Cr(III) stress inhibited the endosymbiont energy metabolism enzymes and further led to endosymbiont apoptosis in coral. In addition, under exposure to the combination of stressors, when the concentration of Cr(III) remained at 1 × 10-2 mg/L, the toxic effects of heavy metals on the endosymbiont were temporarily relieved with elevated PE concentrations. In contrast, when coral polyps were exposed to 5 mg/L PE and increasing Cr(III) concentrations, their metabolic activities were seriously disturbed, which increased the burden of energy consumption. In the short term, the toxic effect of Cr(III) was more obvious than that of PE because Cr(III) exposure leads to endosymbiont apoptosis and irreversible damage. This is the first study to provide insights into the combined effect of microplastic and Cr(III) stress on the apoptosis and energy pathways of coral endosymbionts. This study suggested that microplastics combined with Cr(III) are an important factor affecting the apoptosis and energy metabolism of endosymbionts, accelerating the collapse of the balance between the coral host and symbiotic endosymbiont.


Assuntos
Antozoários , Animais , Microplásticos , Plásticos/metabolismo , Caspase 3/metabolismo , NAD/metabolismo , Clorofila A/metabolismo , Polietileno/metabolismo , Apoptose , Recifes de Corais
8.
Sci Total Environ ; 867: 161185, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581277

RESUMO

Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Especificidade de Hospedeiro , Bactérias , Simbiose , Recifes de Corais
9.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36223175

RESUMO

A Gram-stain-negative, aerobic, rod-shaped bacterium (D1M17T) was isolated from the seawater surrounding scleractinian coral Acropora digitifera in Daya Bay, Shenzhen, PR China. Strain D1M17T grew with 0-10 % (w/v) NaCl (optimum, 3-4 %), at 15-37 °C (optimum, 28 °C) and at pH 4.5-8.5 (optimum, pH 7.0-7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D1M17T formed a lineage within the genus Aquimarina, family Flavobacteriaceae, and it was distinct from the most closely related species Aquimarina salinaria LMG 25375T, Aquimarina gracilis JCM 17453T and Aquimarina spongiae KCTC 22663T with 16S rRNA gene sequence similarities of 97.2, 97.2 and 97.1 %, respectively. The major respiratory quinone was MK-6. The predominant fatty acids (more than 10 %) were iso-C15 : 0 (28.8 %), iso-C17 : 0 3-OH (21.5 %) and iso-C15 : 1 G (13.1 %). The DNA G+C content of D1M17T was 34.4 mol%. The polar lipids in D1M17T comprised one phospholipid and five unknown polar lipids. Phenotypic characteristics (physiological, biochemical and chemotaxonomic) also supported the taxonomic novelty of this isolate. Thus, strain D1M17T is considered to represent a novel species within the genus Aquimarina, for which the name Aquimarina acroporae sp. nov. is proposed. The type strain is D1M17T (=KCTC 92172T= MCCC 1K07224T).


Assuntos
Antozoários , Flavobacteriaceae , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Cloreto de Sódio , Vitamina K 2/química
10.
Sci Total Environ ; 847: 157363, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843331

RESUMO

Scleractinian corals build the most complex and diverse ecosystems in the ocean with various ecosystem services, yet continue to be degraded by natural and anthropogenic stressors. Despite the rapid decline in scleractinian coral habitats in South China, they are among the least concerning in global coral vulnerability maps. This study developed a rapid assessment approach that combines vulnerability components and species distribution models to map coral vulnerability within a large region based on limited data. The approach contained three aspects including, exposure, habitat suitability, and coral-conservation-based adaptive capacity. The exposure assessment was based on seven indicators, and the habitat suitability was mapped using Maximum Entropy and Random Forest models. Vulnerability of scleractinian corals in South China was spatially evaluated using the approach developed here. The results showed that the average exposure of the study region was 0.62, indicating relatively high pressure. The highest exposure occurred from the east coast of the Leizhou Peninsula to the Pearl River Estuary. Aquaculture and shipping were the most common causes of exposure. Highly suitable habitats for scleractinian corals are concentrated between 18°N-22°N. Only 21.6 % of the potential coral habitats are included in marine protected areas, indicating that there may still be large conservation gaps for scleractinian corals in China. In total, 37.7 % of the potential coral habitats were highly vulnerable, with the highest vulnerability appearing in the Guangdong Province. This study presents the first attempt to map the vulnerability of scleractinian corals along the coast of South China. The proposed approach and findings provide an essential tool and information supporting the sustainable management and conservation of coral reef ecosystems, addressing an important gap on the world's coral reef vulnerability map.


Assuntos
Antozoários , Animais , China , Recifes de Corais , Ecossistema
11.
Toxics ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35622644

RESUMO

Contamination by heavy metals is a significant issue worldwide. In recent decades, soil heavy metals pollutants in China had adverse impacts on soil quality and threatened food security and human health. Anthropogenic inputs mainly generate heavy metal contamination in China. In this review, the approaches were used in these investigations, focusing on geochemical strategies and metal isotope methods, particularly useful for determining the pathway of mining and smelting derived pollution in the soil. Our findings indicate that heavy metal distribution substantially impacts topsoils around mining and smelting sites, which release massive amounts of heavy metals into the environment. Furthermore, heavy metal contamination and related hazards posed by Pb, Cd, As, and Hg are more severe to plants, soil organisms, and humans. It's worth observing that kids are particularly vulnerable to Pb toxicity. And this review also provides novel approaches to control and reduce the impacts of heavy metal pollution. Hydrometallurgy offers a potential method for extracting metals and removing potentially harmful heavy metals from waste to reduce pollution. However, environmentally friendly remediation of contaminated sites is a significant challenge. This paper also evaluates current technological advancements in the remediation of polluted soil, such as stabilization/solidification, natural attenuation, electrokinetic remediation, soil washing, and phytoremediation. The ability of biological approaches, especially phytoremediation, is cost-effective and favorable to the environment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35439113

RESUMO

Two Gram-staining-negative, aerobic, rod-shaped bacteria NNCM1T and NNCM2T were isolated from the scleractinian coral Acropora digitifera. NNCM1T grew with 0.5-12 % (w/v) NaCl (optimum, 3-6 %), at 18-37 °C (optimum, 28 °C) and at pH 6.0-10.0 (optimum, 7.0-8.0). NNCM2T grew with 0.5-10 % (w/v) NaCl (optimum, 2 %), at 18-37 °C (optimum, 28 °C) and at pH 6.5-9.0 (optimum, 7.0). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NNCM1T formed a lineage within the genus Algiphilus of the family Algiphilaceae, and it was distinct from the most closely related species Algiphilus aromaticivorans DG1253T, with a 16S rRNA gene sequences similarity of 97.05 %. NNCM2T formed a lineage within the family Rhodobacteraceae, and it was distinct from the closely related genera Limibaculum halophilum CAU 1123T, Paroceanicella profunda D4M1T and Pseudoruegeria aestuarii MME-001T with 93.41, 92.78 and 91.09% identities, respectively. The major respiratory quinone was Q-8 and Q-10 for NNCM1T and NNCM2T, respectively. The predominant fatty acids (more than 10 %) were summed feature 8 (39.4 %) and C16 : 0 (19.4 %) for NNCM1T and summed feature 8 (62.8 %) and C16 : 0 (12.4 %) for NNCM2T. The DNA G+C contents of NNCM1T and NNCM2T were 63.3 and 63.4 mol% respectively. The polar lipids of NNCM1T comprised one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol and one unknown polar lipid, while those of NNCM2T comprised one phosphatidylethanolamine, one phosphatidylglycerol, one aminolipid and four unknown polar lipids. Phenotypic characteristics (physiological, biochemical and chemotaxonomic) also supported the taxonomic novelty of the two isolates. Thus, NNCM1T is considered to represent a novel species within genus Algiphilus, for which the name Algiphilus acroporae sp. nov. is proposed. The type strain is NNCM1T (=KCTC 82966T=MCCC 1K06445T). NNCM2T represents a novel genus and species within the family Rhodobacteraceae, for which the name Coraliihabitans acroporae gen. nov. sp. nov. is proposed. The type strain is NNCM2T (=KCTC 82967T=MCCC 1K06408T).


Assuntos
Antozoários , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfatidilgliceróis/análise , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Ubiquinona/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-35077344

RESUMO

A Gram-stain-negative, non-motile, strictly aerobic, rod-shaped bacterium, with one polar flagellum and named D11R37T, was isolated from coral culture seawater of Acropora digitifera. Strain D11R37T grew with 0-6 % (w/v) NaCl (optimum, 0.5%), at 10-41 °C (optimum, 28 °C) and at pH 6.0-7.0 (optimum, 7.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D11R37T formed a lineage within the genus Flavobacterium, and it was distinct from the most closely related species Flavobacterium suzhouense XIN-1T and Flavobacterium suaedae G16-7T with 16S rRNA gene sequences similarities of 95.97% and 95.48 %. The major respiratory quinone was menaquinone-6. The polar lipids comprised one phosphatidylethanolamine, two aminolipids and one unknown polar lipid. The predominant fatty acids (more than 10 % of total fatty acids) were iso-C15 : 0 (18.0%), iso-C17 : 0 3-OH (11.9 %) and summed feature 3 (10.9 %). The DNA G+C content was 41.3 mol%. Based on polyphasic taxonomic data, strain D11R37T is considered to represent a novel species within the genus Flavobacterium, for which the name Flavobacterium coralii sp. nov. is proposed. The type strain is D11R37T (=KCTC 82968T=MCCC 1K06440T).


Assuntos
Antozoários , Flavobacterium , Filogenia , Água do Mar/microbiologia , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
14.
Environ Sci Pollut Res Int ; 29(10): 14393-14399, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34611802

RESUMO

Microplastics (MPs) have been a serious environmental problem because it can carry pollution like heavy metals and organic pollutants. However, the combined effect of MPs and bivalent copper ion (Cu(II)) on the coral azooxanthellate has been rarely studied. In the present study, the combined effects of PVC and Cu(II) on the physiological responses of Tubastrea aurea were studied. Our results showed that MPs alone enhanced the activity of catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH). The mixture groups had the same effects on the CAT and GSH, which enhanced CAT and GSH activity by 97% and 53% respectively. MPs alone and the combined treatment groups decreased the activity of lipid peroxide (LPO) and the content of metallothionein (MT) by 45% and 20% of the coral Tubastrea aurea. Cu(II) exposure always had negative effect on the physiological parameters of coral, and MPs decreased the toxicity of Cu(II) in the combined groups. This work is the first time to report the combined effects of Cu(II) and microplastics on azooxanthellate coral, which will provide important preliminary data for the following research.


Assuntos
Antozoários , Cobre , Microplásticos , Poluentes Químicos da Água , Animais , Catalase , Cobre/toxicidade , Microplásticos/toxicidade , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
15.
Front Microbiol ; 12: 666100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149652

RESUMO

Microplastic pollution in marine environments has increased rapidly in recent years, with negative influences on the health of marine organisms. Scleractinian coral, one of the most important species in the coral ecosystems, is highly sensitive to microplastic. However, whether microplastic causes physiological disruption of the coral, via oxidative stress, immunity, and energy metabolism, is unclear. In the present study, the physiological responses of the coral Acropora sp. were determined after exposure to polyethylene terephthalate (PET), polyamide 66 (PA66), and polyethylene (PE) microplastic for 96 h. The results showed that there were approximately 4-22 items/nubbin on the surface of the coral skeleton and 2-10 items/nubbin on the inside of the skeleton in the MPs exposure groups. The density of endosymbiont decreased (1.12 × 105-1.24 × 105 cell/cm2) in MPs exposure groups compared with the control group. Meanwhile, the chlorophyll content was reduced (0.11-0.76 µg/cm2) after MPs exposure. Further analysis revealed that the antioxidant enzymes in coral tissues were up-regulated (Total antioxidant capacity T-AOC 2.35 × 10-3-1.05 × 10-2 mmol/mg prot, Total superoxide dismutase T-SOD 3.71-28.67 U/mg prot, glutathione GSH 10.21-10.51 U/mg prot). The alkaline phosphatase (AKP) was inhibited (1.44-4.29 U/mg prot), while nitric oxide (NO) increased (0.69-2.26 µmol/g prot) for cell signal. Moreover, lactate dehydrogenase (LDH) was down-regulated in the whole experiment period (0.19-0.22 U/mg prot), and Glucose-6-phosphate dehydrogenase (G6PDH) for cell the phosphate pentoses pathway was also reduced (0.01-0.04 U/mg port). Results showed that the endosymbiont was released and chlorophyll was decreased. In addition, a disruption could occur under MPs exposure, which was related to anti-oxidant, immune, and energy metabolism.

16.
Mar Pollut Bull ; 165: 112173, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33621903

RESUMO

Pollution of marine environments with microplastic particles has increased rapidly during the last few decades and its impact on marine lives have recently gained attention in both public and scientific community. Scleractinian corals are the foundation species of coral reef ecosystems that are greatly affected by the microplastics (MPs), yet little is known about the effects of microplastics on the coral azooxanthellate. In the present study, effects of the exposure and ingestion of polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), and polyamide 66 (PA66) were studied on the physiological responses of Tubastrea aurea. Our results shows that coral ingested microplastics in four treatment groups and the exposure of microplastics inhibited the antioxidant capacity, immune system, calcification and energy metabolism of the coral Tubastrea aurea. Superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (AKP), and total antioxidant capacity (TAC) were reduced by 29.4%, 35.5%, 73.9%, and 52.2% in the corals exposed to PVC, respectively. PET microplastics impacted more severely on pyruvate kinase (PK), Na, K-ATPase (Na, K-ATP), Ca-ATPase (Ca-ATP), Mg-ATPase (Mg-ATP), Ca-Mg-ATPase (Ca, Mg-ATP), and glutathione (GSH). Activity of these enzymes decreases to 89.6%, 66.7%, 63.6%, 60.4%, 48.4%, and 50.5% respectively. We anticipate that this work will provide important preliminary data for better understanding the effects of MPs on stony corals azooxanthellate.


Assuntos
Antozoários , Poluentes Químicos da Água , Animais , Recifes de Corais , Ecossistema , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
BMC Genomics ; 20(1): 387, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101011

RESUMO

BACKGROUND: Scleractinian corals are important reef builders, but around the world they are under the threat of global climate change as well as local stressors. Molecular resources are critical for understanding a species' stress responses and resilience to the changing environment, but such resources are unavailable for most scleractinian corals, especially those distributed in the South China Sea. We therefore aimed to provide transcriptome resources for 14 common species, including a few structure forming species, in the South China Sea. DESCRIPTION: We sequenced the transcriptome of 14 species of scleractinian corals using high-throughput RNA-seq and conducted de novo assembly. For each species, we produced 7.4 to 12.0 gigabases of reads, and assembled them into 271 to 762 thousand contigs with a N50 value of 629 to 1427 bp. These contigs included 66 to 114 thousand unigenes with a predicted open reading frame, and 74.3 to 80.5% of the unigenes were functionally annotated. In the azooxanthelate species Tubastraea coccinea, 41.5% of the unigenes had at least a best-hit sequence from corals. In the other thirteen species, 20.2 to 48.9% of the annotated unigenes had best-hit sequences from corals, and 28.3 to 51.6% from symbiotic algae belonging to the family Symbiodinaceae. With these resources, we developed a transcriptome database (CoralTBase) which features online BLAST and keyword search for unigenes/functional terms through a user friendly Internet interface. SHORT CONCLUSION: We developed comprehensive transcriptome resources for 14 species of scleractinian corals and constructed a publicly accessible database ( www.comp.hkbu.edu.hk/~db/CoralTBase ). CoralTBase will facilitate not only functional studies using these corals to understand the molecular basis of stress responses and adaptation, but also comparative transcriptomic studies with other species of corals and more distantly related cnidarians.


Assuntos
Antozoários/classificação , Antozoários/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Anotação de Sequência Molecular , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Simbiose
18.
Mitochondrial DNA B Resour ; 2(1): 60-61, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33490437

RESUMO

The complete mitochondrial genome sequence of Palinura homarus was obtained using PCR amplification and walking sequencing (GenBank accession no. JN_542716). The complete mitochondrial genome of P. homarus was 15,665 bp long and showed significant AT bias (67% AT content, 33% GC content). The A + T-rich region included copy-related control information and a poly (dT) structure that related to replication and transcription. In this study, the gene arrangement was consistent with other Palinura mitochondrial genomes and the sequence was strikingly similar to Panulirus ornatus, which would be useful in species identification and natural resources conservation.

19.
Chemosphere ; 83(7): 1005-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21377187

RESUMO

The goal of this study was to investigate the effects of both concentration levels and loading sequence or contamination history of each pollutant on the equilibrium sorption of mixed organic pollutants on soils. We measured binary sorption equilibria for a soil using ten concentration levels for both phenanthrene and naphthalene. Both solutes were either simultaneously loaded or sequentially loaded (i.e., the second sorbate was loaded after the sorption of the first sorbate had attained equilibrium) on soil. The results showed different competitive sorption equilibria between phenanthrene and naphthalene. In the presence of phenanthrene and regardless of loading sequence, naphthalene exhibited consistently lower sorption capacities and the ideal adsorbed solution theory (IAST) slightly underestimates the naphthalene sorption equilibria. Conversely, the sorption equilibria of phenanthrene in the presence of naphthalene depended upon the loading sequence of the two sorbates on the soil. Little competition from naphthalene on the sorption equilibria of phenanthrene was observed when phenanthrene was loaded either simultaneously with or sequentially after naphthalene, but appreciable competition from naphthalene was observed when the soil had been pre-contaminated with phenanthrene. IAST slightly underestimates the phenanthrene sorption equilibria observed in the latter system, but it cannot estimate the phenanthrene sorption equilibria in the former two systems. We proposed that adsorption on internal surfaces of ink-bottle shaped pores within relatively flexible sorbent matrix may have caused the competitive sorption phenomena observed in this study. The study suggests that contamination history may have strong influence on the equilibrium sorption of organic pollutant mixtures.


Assuntos
Naftalenos/química , Fenantrenos/química , Poluentes do Solo/química , Solo/química , Adsorção , Fenômenos Químicos , Naftalenos/análise , Fenantrenos/análise , Poluentes do Solo/análise
20.
Chemosphere ; 83(6): 792-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21421250

RESUMO

The New York/New Jersey Harbor (also known as the Hudson River Estuary) is heavily contaminated with polychlorinated biphenyls (PCBs) arising in part from inputs from the Upper Hudson River, which is a Superfund site containing historical PCB contamination, and also due to inputs from the New York City metropolitan area. The Contamination Assessment and Reduction Project (CARP) measured PCBs and other contaminants in ambient water samples collected throughout the Harbor region during 1998-2001. In order to investigate the sources of PCBs to the NY/NJ Harbor, this data base of PCB concentrations was analyzed using Positive Matrix Factorization (PMF). This analysis resolved seven factors that are thought to be associated with sources such as the Upper Hudson River, storm water runoff, combined sewer overflows (CSOs), and wastewater effluents. The PMF model also produced a factor that appears to be related to sites contaminated with Aroclor 1260. To the extent that the NY/NJ Harbor is typical of urbanized estuaries throughout the United States, these results suggest that storm water runoff is probably a significant source of PCBs to surface waters in urban areas.


Assuntos
Bifenilos Policlorados/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Doce/química , Sedimentos Geológicos/química , New Jersey , New York , Oceanos e Mares , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA