Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
World J Clin Cases ; 12(6): 1138-1143, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464934

RESUMO

BACKGROUND: Intestinal obstruction is a common occurrence in clinical practice. However, the occurrence of herpes zoster complicated by intestinal obstruction after abdominal surgery is exceedingly rare. In the diagnostic and treatment process, clinicians consider it crucial to identify the primary causes of its occurrence to ensure effective treatment and avoiding misdiagnosis. CASE SUMMARY: Herein, we present the case of a 40-year-old female patient with intestinal obstruction who underwent laparoscopic appendectomy and developed herpes zoster after surgery. Combining the patient's clinical manifestations and relevant laboratory tests, it was suggested that the varicella zoster virus reactivated during the latent period after abdominal surgery, causing herpes zoster. Subsequently, the herpes virus invaded the visceral nerve fibers, causing gastrointestinal dysfunction and loss of intestinal peristalsis, which eventually led to intestinal obstruction. The patient was successfully treated through conservative treatment and antiviral therapy and subsequently discharged from the hospital. CONCLUSION: Pseudo-intestinal obstruction secondary to herpes zoster infection is difficult to distinguish from mechanical intestinal obstruction owing to various causes. In cases of inexplicable intestinal obstructions, considering the possibility of a viral infection is essential to minimize misdiagnosis and missed diagnoses.

2.
Adv Mater ; 36(19): e2312311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305577

RESUMO

The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.

3.
World J Clin Cases ; 12(5): 942-950, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38414605

RESUMO

BACKGROUND: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopharyngeal, oropharyngeal, soft palate, and tongue base areas. The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation. Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation. Nevertheless, there is a lack of clinical application and imaging evidence. AIM: To investigate the clinical efficacy and mechanisms of a mid-frequency anti-snoring device in treating moderate OSAHS. METHODS: We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023. They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep. Following the treatment, we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores. Additionally, we performed computed tomography scans of the oropharynx in the awake state, during snoring, and while using the mid-frequency anti-snoring device. Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas. RESULTS: Compared to pretreatment measurements, patients exhibited a significant reduction in the apnea-hypopnea index, the percentage of time with oxygen saturation below 90%, snoring frequency, and the duration of the most prolonged apnea event. The lowest oxygen saturation showed a notable increase, and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved. Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state. Conversely, during mid-frequency anti-snoring device treatment, these areas increased compared to snoring. CONCLUSION: The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS, thereby improving their quality of life and reducing daytime sleepiness. These therapeutic effects are attributed to the device's ability to ameliorate the narrowing of the oropharynx in OSAHS patients.

4.
Small ; 20(13): e2308165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968247

RESUMO

During the layer-by-layer (LBL) processing of polymer solar cells (PSCs), the swelling and molecule interdiffusion are essential for achieving precise, controllable vertical morphology, and thus efficient PSCs. However, the influencing mechanism of material properties on morphology and correlated device performance has not been paid much attention. Herein, a series of fluorinated/non-fluorinated polymer donors (PBDB-T and PBDB-TF) and non-fullerene acceptors (ITIC, IT-2F, and IT-4F) are employed to investigate the performance of LBL devices. The impacts of fluorine substitution on the repulsion and miscibility between the donor and acceptor, as well as the molecular arrangement of the donor/acceptor and the vertical distribution of the LBL devices are systematically explored by the measurement of donor/acceptor Flory-Huggins interaction parameters, spectroscopic ellipsometry, and neutron reflectivity, respectively. With efficient charge transfer due to the ideal vertical and horizon morphology properties, devices based on PBDB-TF/IT-4F exhibit the highest fill factors (FFs) as well as champion power conversion efficiencies (PCEs). With this guidance, high-performance LBL devices with PCE of 17.2%, 18.5%, and 19.1% are obtained by the fluorinated blend of PBDB-TF/Y6, PBDB-TF/L8-BO, and D18/L8-BO respectively.

5.
Heliyon ; 9(11): e20960, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920495

RESUMO

The bake hardening value is one of the vital strength indexes of dual-phase steel, representing the strengthening ability of materials after pre-strain and baking, playing an important role in vehicle safety and lightweight design. Studying and improving the strain aging mechanism of dual-phase steel helps one to understand the material characteristics and enhances its utilization value. However, the ultra-high strength dual-phase steel is often prone to fracture outside the gauge length of a tensile specimen of the bake hardening value test. No suitable theory explains the fundamental law of dislocation pinning during the saturation stage at present. This paper used FEA, DIC, SEM, TEM, internal friction, and metallographic methods to study the strain aging behavior of dual-phase steels under different pre-strain, bake time, and bake temperature conditions. The results show that the fracture outside the gauge length is related to factors such as the uneven distribution of pre-strain and the ultra-high upper yield strength. The rolling pin shape tensile specimen testing has successfully solved this testing problem. The measured results at the saturation stage of dislocation pinning are in good agreement with the fitting results of the dislocation pinning strengthen mechanism based on the probability event quantization assumption.

6.
Materials (Basel) ; 16(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903160

RESUMO

Nonlinear guided elastic waves have attracted extensive attention owing to their high sensitivity to microstructural changes. However, based on the widely used second harmonics, third harmonics and static components, it is still difficult to locate the micro-defects. Perhaps the nonlinear mixing of guided waves can solve these problems since their modes, frequencies and propagation direction can be flexibly selected. Note that the phenomena of phase mismatching usually occur due to the lack of precise acoustic properties for the measured samples, and they may affect the energy transmission from the fundamental waves to second-order harmonics as well as reduce the sensitivity to micro-damage. Therefore, these phenomena are systematically investigated to more accurately assessing the microstructural changes. It is theoretically, numerically, and experimentally found that the cumulative effect of difference- or sum-frequency components will be broken by the phase mismatching, accompanied by the appearance of the beat effect. Meanwhile, their spatial periodicity is inversely proportional to the wavenumber difference between fundamental waves and difference- or sum-frequency components. The sensitivity to micro-damage is compared between two typical mode triplets that approximately and exactly meet the resonance conditions, and the better one is utilized for assessing the accumulated plastic deformations in the thin plates.

7.
Adv Sci (Weinh) ; 10(7): e2206580, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592412

RESUMO

Hybrid cycloalkyl-alkyl side chains are considered a unique composite side-chain system for the construction of novel organic semiconductor materials. However, there is a lack of fundamental understanding of the variations in the single-crystal structures as well as the optoelectronic and energetic properties generated by the introduction of hybrid side chains in electron acceptors. Herein, symmetric/asymmetric acceptors (Y-C10ch and A-C10ch) bearing bilateral and unilateral 10-cyclohexyldecyl are designed, synthesized, and compared with the symmetric acceptor 2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9 bis(ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5] pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10- diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (L8-BO). The stepwise introduction of 10-cyclohexyldecyl side chains decreases the optical bandgap, deepens the energy level, and enables the acceptor molecules to pack closely in a regular manner. Crystallographic analysis demonstrates that the 10-cyclohexyldecyl chain endows the acceptor with a more planar skeleton and enforces more compact 3D network packing, resulting in an active layer with higher domain purity. Moreover, the 10-cyclohexyldecyl chain affects the donor/acceptor interfacial energetics and accelerates exciton dissociation, enabling a power conversion efficiency (PCE) of >18% in the 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6) (PM6):A-C10ch-based organic solar cells (OSCs). Importantly, the incorporation of Y-C10ch as the third component of the PM6:L8-BO blend results in a higher PCE of 19.1%. The superior molecular packing behavior of the 10-cyclohexyldecyl side chain is highlighted here for the fabrication of high-performance OSCs.

8.
J Clin Neurosci ; 106: 166-172, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343500

RESUMO

OBJECTIVE: To investigate the clinical experience and application value of endoscopic resection of lesions in and around the third ventricle using a transcortical expanded transforaminal transvenous transchoroidal approach with an endoport. METHODS: Clinical data and follow-up results of seven patients who underwent the removal of lesions in the third ventricle and its adjacent area with an endoport-guided endoscopic system from January 2018 to December 2020 in the Department of Neurosurgery, Zhongshan Hospital Affiliated to Fudan University, were analyzed retrospectively. Two other patients from the Affiliated Pediatric Hospital of Fudan University and the Affiliated Hospital of Guizhou Medical University, respectively, were included in the analysis. RESULTS: A total of nine cases of third ventricle tumors were included in the study, including six women and three men, with an average age of 37.8 years (4-84 years old) and a follow-up time of 6-44 months. These nine tumor cases included two pilocytic astrocytomas, one diffuse midline glioma (H3 K27-altered), two craniopharyngiomas, two choroid plexus (CP) papillomas, one germinoma, and one pineal parenchymal tumor of intermediate differentiation. Total resection was completed in eight cases, with one near-total resection. There were no complications related to the surgical approach, such as epilepsy, aphasia, or hemiplegia. CONCLUSIONS: The endoscope transcortical expanded transforaminal transvenous transchoroidal approach using an endoport can safely and effectively remove third ventricle lesions. This approach can reach a wide area, from the anterior to the posterior third ventricle.


Assuntos
Neoplasias Encefálicas , Glioma , Papiloma do Plexo Corióideo , Glândula Pineal , Neoplasias Hipofisárias , Terceiro Ventrículo , Masculino , Criança , Humanos , Feminino , Adulto , Pré-Escolar , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Terceiro Ventrículo/diagnóstico por imagem , Terceiro Ventrículo/cirurgia , Estudos Retrospectivos , Glioma/cirurgia , Neoplasias Encefálicas/cirurgia
9.
Dalton Trans ; 51(31): 11851-11858, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35875996

RESUMO

The development of novel Mn-based phosphor hosts has received increasing interest in the search for highly efficient red emitting phosphors for white LED applications. In this study, Ca9MnK(PO4)7, a compound with the ß-Ca3(PO4)2-type structure, was successfully synthesized by a high-temperature solid-state reaction process. The Eu2+-doped Ca9MnK(PO4)7 phosphor exhibits a broadband red emission peaking at 650 nm. The optimal excitation wavelength is 395 nm, which matches that of commercial ultraviolet (NUV) chips. Codoping Ce3+ ions into the Ca9MnK(PO4)7:Eu2+ phosphor efficiently improves Mn2+ luminescence. Here, Ce3+ acts as a charge compensator rather than a sensitizer and substantially increases the effective number of Eu2+ and finally improves the red emission of Mn2+. The charge compensation mechanism is also verified by codoping some optically inert rare earth ions (Ln3+) including Y3+, La3+ and Gd3+. The results demonstrate that these developed Ca9MnK(PO4)7:Eu2+, Ln3+ phosphors have great potential for application in NUV-based white LEDs. The energy transfer approach combined with the charge compensation technique is valuable for improving the performance of the red-emitting Ca9MnK(PO4)7:Eu2+ phosphor, which can further be used in developing other Mn-based phosphors.

10.
Mol Neurobiol ; 59(5): 3254-3279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297012

RESUMO

Single-factor intervention, such as physical exercise and auditory and visual stimulation, plays a positive role on the prevention and treatment of Alzheimer's disease (AD); however, the therapeutic effects of single-factor intervention are limited. The beneficial effects of these multifactor combinations on AD and its molecular mechanism have yet to be elucidated. Here, we investigated the effect of multifactor intervention, voluntary wheel exercise, and involuntary treadmill running in combination with acousto-optic stimulation, on adult neurogenesis and behavioral phenotypes in a mouse model of AD. We found that 4 weeks of multifactor intervention can significantly increase the production of newborn cells (BrdU+ cells) and immature neurons (DCX+ cells) in the hippocampus and lateral ventricle of Aß oligomer-induced mice. Importantly, the multifactor intervention could promote BrdU+ cells to differentiate into neurons (BrdU+ DCX+ cells or BrdU+ NeuN+ cells) and astrocytes (BrdU+GFAP+ cells) in the hippocampus and ameliorate Aß oligomer-induced cognitive impairment and anxiety- and depression-like behaviors in mice evaluated by novel object recognition, Morris water maze tests, elevated zero maze, forced swimming test, and tail suspension test, respectively. Moreover, multifactor intervention could lead to an increase in the protein levels of PSD-95, SYP, DCX, NeuN, GFAP, Bcl-2, BDNF, TrkB, and pSer473-Akt and a decrease in the protein levels of BAX and caspase-9 in the hippocampal lysates of Aß oligomer-induced mice. Furthermore, sequencing analysis of serum metabolites revealed that aberrantly expressed metabolites modulated by multifactor intervention were highly enriched in the biological process associated with keeping neurons functioning and neurobehavioral function. Additionally, the intervention-mediated serum metabolites mainly participated in glutamate metabolism, glucose metabolism, and the tricarboxylic acid cycle in mice. Our findings suggest the potential of multifactor intervention as a non-invasive therapeutic strategy for AD to anti-Aß oligomer neurotoxicity.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Bromodesoxiuridina/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Neurogênese/fisiologia , Natação
11.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771381

RESUMO

By using the low loading of the conductor filler to achieve high conductivity is a challenge associated with electrically conductive adhesion. In this study, we show an assembling of nickel-coated polystyrene (Ni@PS) microspheres into 3-dimensional network within the epoxy resin with the assistance of an electric field. The morphology evolution of the microspheres was observed with optical microscopy and scanning electron microscopy (SEM). The response speed of Ni@PS microsphere to the electric field were investigated by measuring the viscosity and shear stress variation of the suspension at a low shear rate with an electrorheological instrument. The SEM results revealed that the Ni@PS microspheres aligned into a pearl-alike structure. The AC impedance spectroscopy confirmed that the conductivity of this pearl-alike alignment was significantly enhanced when compared to the pristine one. The maximum enhancement in conductivity is achieved at 15 wt. % of Ni@PS microspheres with the aligned composites about 3 orders of magnitude as much as unaligned one, typically from ~10-5 S/m to ~10-2 S/m.

12.
Nat Commun ; 12(1): 5881, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620857

RESUMO

Hydroalkylation, the direct addition of a C(sp3)-H bond across an olefin, is a desirable strategy to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and natural products. Herein, we report a reliable method for accessing α-branched amines via nickel-catalyzed hydroalkylation reactions. Specifically, by using bis(cyclooctadiene)nickel (Ni(cod)2) together with a phosphine ligand, we achieved a formal C(sp3)-H bond insertion reaction between olefins and N-sulfonyl amines without the need for an external hydride source. The amine not only provides the alkyl motif but also delivers hydride to the olefin by means of a nickel-engaged ß-hydride elimination/reductive elimination process. This method provides a platform for constructing chiral α-branched amines by using a P-chiral ligand, demonstrating its potential utility in organic synthesis. Notably, a sulfonamidyl boronate complex formed in situ under basic conditions promotes ring-opening of the azanickellacycle reaction intermediate, leading to a significant improvement of the catalytic efficiency.

13.
Adv Mater ; 33(18): e2007177, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33742493

RESUMO

The intrinsic electronic properties of donor (D) and acceptor (A) materials in coupling with morphological features dictate the output in organic solar cells (OSCs). New physical properties of intimate eutectic mixing are used in nonfullerene-acceptor-based D-A1 -A2 ternary blends to fine-tune the bulk heterojunction thin film morphology as well as their electronic properties. With enhanced thin film crystallinity and improved carrier transport, a significant JSC amplification is achieved due to the formation of eutectic fibrillar lamellae and reduced defects state density. Material wise, aligned cascading energy levels with much larger driving force, and suppressed recombination channels confirm efficient charge transfer and transport, enabling an improved power conversion efficiency (PCE) of 17.84%. These results reveal the importance of utilizing specific material interactions to control the crystalline habit in blended films to form a well-suited morphology in guiding superior performances, which is of high demand in the next episode of OSC fabrication toward 20% PCE.

14.
Polymers (Basel) ; 14(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35012092

RESUMO

Chitosan-based nanostructures have been widely applied in biomineralization and biosensors owing to its polycationic properties. The creation of chitosan nanostructures with controllable morphology is highly desirable, but has met with limited success yet. Here, we report that nanostructured chitosan tartaric sodium (CS-TA-Na) is simply synthesized in large amounts from chitosan tartaric ester (CS-TA) hydrolyzed by NaOH solution, while the CS-TA is obtained by dehydration-caused crystallization. The structures and self-assembly properties of CS-TA-Na are carefully characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), X-ray diffraction (XRD), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), a scanning electron microscope (SEM) and a polarizing optical microscope (POM). As a result, the acquired nanostructured CS-TA-Na, which is dispersed in an aqueous solution 20-50 nm in length and 10-15 nm in width, shows both the features of carboxyl and amino functional groups. Moreover, morphology regulation of the CS-TA-Na nanostructures can be easily achieved by adjusting the solvent evaporation temperature. When the evaporation temperature is increased from 4 °C to 60 °C, CS-TA-Na nanorods and nanosheets are obtained on the substrates, respectively. As far as we know, this is the first report on using a simple solvent evaporation method to prepare CS-TA-Na nanocrystals with controllable morphologies.

15.
J Plant Res ; 133(5): 715-726, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506283

RESUMO

Ascorbate peroxidase (APX) is one of the important antioxidant enzymes in the active oxygen metabolism pathway of plants and animals, especially it is the key enzyme to clear H2O2 in chloroplast and the main enzyme of vitamin C metabolism. However, knowledge about APX gene family members and their evolutionary and functional characteristics in kiwifruit is limited. In this study, we identified 13 members of the APX gene family in the kiwifruit (cultivar: Hongyang) genome according the APX proteins conserved domain of Arabidopsis thaliana. Phylogenetic analysis by maximum likelihood split these 13 genes into four groups. The APX gene family members were distributed on nine chromosomes (Nos. 4, 5, 11, 13, 20, 21, 23, 25, 28). Most of the encoded hydrophilic and lipid-soluble enzymes were predicted to be located in the cytoplasm, nucleus and chloroplast. Among them, AcAPX4, AcAPX5, AcAPX8, AcAPX12 were transmembrane proteins, and AcAPX8 and AcAPX12 had the same transmembrane domain. The gene structure analysis showed that AcAPXs were composed of 4-22 introns, except that AcAPX10 was intron-free. Multiple expectation maximization for motif elicitation program (MEME) analyzed 13 APX protein sequences of Actinidia chinensis and identified 10 conserved motifs ranging in length from 15 to 50 amino acid residues. Additionally, the predicted secondary structures of the main motifs consisted of α-helix and random coils. The gene expression of fruits in different growth stages and bagging treatment were determined by qRT-PCR. The results showed that 8 AcAPXs had the highest expression levels during the color turning period and only the gene expression of AcAPX3 was consistent with the ascorbic acid content; five AcAPXs were consistent with the ascorbic acid content after bagging. Our data provided evolutionary and functional information of AcAPX gene family members and revealed the gene expression of different members in different growth stages and bagging treatments These results may be useful for future studies of the structures and functions of AcAPX family members.


Assuntos
Actinidia , Ascorbato Peroxidases , Actinidia/genética , Ascorbato Peroxidases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Filogenia , Proteínas de Plantas
16.
J Nat Prod ; 83(2): 489-496, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32058719

RESUMO

Six new pairs of isoquinoline alkaloid enantiomers, designated as yanhusanines A-F (1-6), were isolated from an aqueous extract of Corydalis yanhusuo tubers. The structures of these enantiomers were elucidated via physicochemical analysis and a variety of spectroscopic methods. All compounds were resolved into their enantiomers via chiral-phase HPLC, and their configurations were determined by DP4+ NMR calculation methods, specific rotations, and comparison of experimental and calculated ECD spectra. Compounds 1-6 bear a rare 9-methyl moiety, and compound 1 possesses a rare 1-oxa-6-azaspiro[4.5]decane core containing an N-CHO group. Compounds (+)-2, (-)-2, (+)-4, (-)-4, (+)-5, (-)-5, (+)-6, and (-)-6 exhibited selective inhibitory activities against human carboxylesterase (hCE2), in the IC50 value range of 2.0-13.2 µM.


Assuntos
Alcaloides/química , Isoquinolinas/química , Alcaloides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Corydalis/química , Humanos , Isoquinolinas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular
17.
Org Lett ; 21(18): 7635-7638, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31507178

RESUMO

A diphenyl-diselenide-mediated Claisen-type rearrangement/cyclization of propargylic aryl ethers under metal-free conditions is developed, affording various naphthofuran-2-carboxaldehydes in moderate to excellent yield. The broad substrate scope and excellent functional group compatibility suggest that it can be a straightforward and powerful method to access naphthofuran-2-carboxaldehydes in a highly regioselective manner. Moreover, this reaction can be scaled up to the gram scale.

18.
ACS Appl Mater Interfaces ; 11(19): 17592-17601, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31012298

RESUMO

Organic blue luminescent materials are essential for organic light-emitting diodes (OLEDs). However, high-quality blue materials that can fulfill the requirements of OLED commercialization are much rare. Herein, two novel blue luminogens, 9-(4-(2,6-di- tert-butyl-10-(4-(1,2,2-triphenylvinyl)phenyl)anthracen-9-yl)phenyl)-9 H-carbazole and 9-(4-(2,6-di- tert-butyl-10-(4-(1,2,2-triphenylvinyl)phenyl)anthracen-9-yl)1,3-di(9 H-carbazol-9-yl)benzene (TPE-TADC), consisting of anthracene, tetraphenylethene, and carbazole groups are successfully prepared, and their thermal, optical, electronic, and electrochemical properties are fully investigated. They exhibit prominent aggregation-induced emission property and strong blue fluorescence at ∼455 nm in neat films. Efficient nondoped OLEDs are fabricated with these blue luminogens, providing blue electroluminescence (EL) at 451 nm (CIE x, y = 0.165, 0.141) and high EL efficiencies of 6.81 cd A-1, 6.57 lm W-1, and 5.71%. By utilizing TPE-TADC as a blue emissive layer, high-performance two-color hybrid white OLEDs are achieved, furnishing modulatable light color from pure white (CIE x, y = 0.33, 0.33) to warm white (CIE x, y = 0.44, 0.46) and excellent EL efficiencies of 56.7 cd A-1, 55.2 lm W-1, and 19.2%. More importantly, these blue and white OLEDs all display ultrahigh color and efficiency stabilities at high luminance, indicating the great potential of these blue luminogens for the application in OLED displays and white illumination.

19.
Front Chem ; 7: 199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024889

RESUMO

In this work, two tailor-made luminogens comprising of electron donors (acridine and phenoxazine) and acceptor (triazine) bridged by the through-space conjugated hexaphenylbenzene (HPB) are synthesized and characterized. Their thermal stability, electrochemical behaviors, crystal, and electronic structures, and photophysical properties are systematically investigated. The crystal and electronic structures reveal that the peripheral phenyls in HPB are closely aligned in a propeller-like fashion, rendering efficient through-space charge transfer between donor and electron moieties. These molecules display weak fluorescence with negligible delayed component in solutions but strong fluorescence with greatly increased delayed component upon aggregate formation, namely aggregation-induced delayed fluorescence (AIDF). Their neat films exhibit high photoluminescence quantum yields (PLQY), and prominent delayed fluorescence. The non-doped organic light-emitting diodes (OLEDs) based on these new luminogens exhibit excellent performance with maximum external quantum efficiency of 12.7% and very small efficiency roll-off of 2.7% at 1,000 cd m-2. Designing AIDF molecules with through-space charge transfer could be a promising strategy to explore robust luminescent materials for efficient non-doped OLEDs.

20.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901895

RESUMO

As a result of the high specific strength/stiffness to mass ratio, filament wound composite pressure vessels are extensively used to contain gas or fluid under pressure. The ability to in-situ monitor the composite pressure vessels for possible damage is important for high-pressure medium storage industries. This paper describes an in-situ monitoring method to permanently monitor composite pressure vessels for their structural integrity. The sensor is made of a multi-walled carbon nanotube (MWCNT) that can be embedded in the composite skin of the pressure vessels. The sensing ability of the sensor is firstly evaluated in various mechanical tests, and in-situ monitoring experiments of a full-scale composite pressure vessel during hydraulic fatigue cycling and pressurization are performed. The monitoring results of the MWCNT sensor are compared with the strains measured by the strain gauges. The results show that the measured signal by the developed sensor matches the mechanical behavior of the composite laminates under various load conditions. In the hydraulic fatigue test, the relationship between the resistance and the strain is built, and could be used to quantitative monitor the filament wound pressure vessel. The bursting of the pressure vessel can be detected by the sharp increase of the MWCNT sensor resistance. Embedding the MWCNT sensor into the composite pressure vessel is successfully demonstrated as a promising method for structural health monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA