Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(36): 9724-9732, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736630

RESUMO

Due to their unique topology and distinct physical properties, cycloparaphenylenes (CPPs) are attractive building blocks for new materials synthesis. While both noncovalent interactions and irreversible covalent bonds have been used to link CPP monomers into extended materials, a coordination chemistry approach remains less explored. Here we show that nucleophilic aromatic substitution reactions can be leveraged to rapidly introduce donor groups (-OR, -SR) onto polyfluorinated CPP rings. Demethylation of methoxide-substituted CPPs produces polycatechol nanohoop ligands that are readily metalated to produce well-defined, multimetallic CPP complexes. As catechols are recurring motifs throughout coordination chemistry and dynamic covalent chemistry, the polycatechol nanohoops reported here open the door to new strategies for the bottom-up synthesis of atomically precise CPP-based materials.

2.
Chem Sci ; 14(15): 4083-4090, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063793

RESUMO

Redox-active tetraoxolene ligands such as 1,4-dihydroxybenzoquinone provide access to a diversity of metal-organic architectures, many of which display interesting magnetic behavior and high electrical conductivity. Here, we take a closer look at how structure dictates physical properties in a series of 1D iron-tetraoxolene chains. Using a diphenyl-derivatized tetraoxolene ligand (H2Ph2dhbq), we show that the steric profile of the coordinating solvent controls whether linear or helical chains are exclusively formed. Despite similar ligand environments, only the helical chain displays temperature-dependent valence tautomerism, switching from (FeII)(Ph2dhbq2-) to (FeIII)(Ph2dhbq3˙-) at temperatures below 203 K. The stabilization of ligand radicals leads to exceptionally strong magnetic exchange coupling (J = -230 ± 4 cm-1). Meanwhile, the linear chains are more amenable to oxidative doping, leading to Robin-Day class II/III mixed-valency and an increase in electrical conductivity by nearly three orders of magnitude. While previous studies have focused on the effects of changing metal and ligand identity, this work highlights how altering the metal-ligand connectivity can be a similarly powerful tool for tuning materials properties.

3.
Chem Commun (Camb) ; 58(88): 12361-12364, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36263660

RESUMO

A barrier to the isoreticular expansion of flexible metal-organic frameworks is their complex breathing behavior, which can lead to pore closure upon solvent exchange and removal. Here we show that chemical cross-linking stabilizes the open form of a flexible aluminum framework with large 17 Å pores.


Assuntos
Estruturas Metalorgânicas , Alumínio
4.
Chem Sci ; 13(35): 10472-10478, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277645

RESUMO

The morphology of electrically conductive metal-organic frameworks strongly impacts their performance in applications such as energy storage and electrochemical sensing. However, identifying the appropriate conditions needed to achieve a specific nanocrystal size and shape can be a time-consuming, empirical process. Here we show how partial ligand oxidation dictates the morphology of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), a prototypical 2D conductive metal-organic framework. Using organic quinones as the chemical oxidant, we demonstrate that partial oxidation of the ligand prior to metal binding alters the nanocrystal aspect ratio by over 60-fold. Systematically varying the extent of initial ligand oxidation leads to distinct rod, block, and flake-like morphologies. These results represent an important advance in the rational control of Cu3(HHTP)2 morphology and motivate future studies into how ligand oxidation impacts the nucleation and growth of 2D conductive metal-organic frameworks.

5.
J Am Chem Soc ; 144(10): 4515-4521, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35255217

RESUMO

The dimensional reduction of solids into smaller fragments provides a route to achieve new physical properties and gain deeper insight into the extended parent structures. Here, we report the synthesis of CuTOTP-OR (TOTPn- = 2,3,6,7-tetraoxidotriphenylene), a family of copper-based macrocycles that resemble truncated fragments of the conductive two-dimensional (2D) metal-organic framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). The planar metal-organic macrocycles self-assemble into ordered nanotubes with internal diameters of ∼2 nm and short interlayer distances of ∼3.20 Å. Strong π-π stacking interactions between macrocycles facilitate out-of-plane charge transport, and pressed pellet conductivities as high as 2(1) × 10-3 S cm-1 are observed. Peripheral alkyl functionalization enhances solution processability and enables the fabrication of thin-film field-effect transistor devices. Ambipolar charge transport is observed, suggesting that similar behavior may be operative in Cu3(HHTP)2. By coupling the attractive features of metal-organic frameworks with greater processability, these macrocycles enable facile device integration and a more nuanced understanding of out-of-plane charge transport in 2D conductive metal-organic frameworks.

6.
J Am Chem Soc ; 143(27): 10317-10323, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34184884

RESUMO

While a number of approaches toward multicomponent metal-organic frameworks have been reported, new strategies affording greater structural versatility and molecular precision are needed to replicate the sophisticated active sites found in enzymes. Here, we outline a general method for templating functional groups within framework pores using thermolabile ligand cross-linkers. We show that tertiary ester-based cross-linkers can be used to install well-defined carboxylic acid pairs at precise relative distances and orientations. The tertiary ester linkages remain intact during framework formation but are readily cleaved to reveal free carboxylic acids upon microwave heating. Successful cross-linker synthesis, framework incorporation, and thermolysis is demonstrated using the mesoporous, terphenyl expanded analogues of MOF-74. When short cross-linkers are used, modeling studies show that the carboxylic acids are installed in a single configuration down the pore channels, spaced ∼7 Šapart. These precisely positioned acid pairs can be used as synthetic handles to build up more complex cooperative active sites.

7.
Inorg Chem ; 60(11): 7602-7606, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973769

RESUMO

Metal-organic cages with well-defined interior cavities and tunable surface chemistry serve as attractive building blocks for new types of soft nanoporous materials. While a compositionally diverse repertoire of metal-organic cages exists, the vast majority feature highly symmetric cores. Here, we report a robust, generalizable synthetic route toward anisotropic copper paddlewheel-based cages with tunable pendant amide groups. An isostructural family with increasingly hydrophobic surface properties has been synthesized and characterized by single-crystal X-ray diffraction, gas sorption analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and 1H NMR digestion experiments. The metal-organic cages reported here may enable a deeper study of how anisotropy influences the long-range structure and emergent function of soft nanoporous materials.

8.
Chem Sci ; 11(6): 1698-1702, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34084391

RESUMO

Bio-inspired motifs for gas binding and small molecule activation can be used to design more selective adsorbents for gas separation applications. Here, we report an iron metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), that binds O2 in a manner similar to hemoglobin and therefore results in highly selective O2 binding. As confirmed by gas adsorption studies and Mössbauer and infrared spectroscopy data, the exposed iron sites in the framework reversibly adsorb substantial amounts of O2 at low temperatures by converting between high-spin, square-pyramidal Fe(ii) centers in the activated material to low-spin, octahedral Fe(iii)-superoxide sites upon gas binding. This change in both oxidation state and spin state observed in Fe-BTTri leads to selective and readily reversible O2 binding, with the highest reported O2/N2 selectivity for any iron-based framework.

9.
Nat Chem ; 11(10): 940-947, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451785

RESUMO

The ability to functionalize hydrocarbons with CO2 could create opportunities for high-volume CO2 utilization. However, current methods to form carbon-carbon bonds between hydrocarbons and CO2 require stoichiometric consumption of very resource-intensive reagents to overcome the low reactivity of these substrates. Here, we report a simple semi-continuous cycle that converts aromatic hydrocarbons, CO2 and alcohol into aromatic esters without consumption of stoichiometric reagents. Our strategy centres on the use of solid bases composed of an alkali carbonate (M2CO3, where M+ = K+ or Cs+) dispersed over a mesoporous support. Nanoscale confinement disrupts the crystallinity of M2CO3 and engenders strong base reactivity at intermediate temperatures. The overall cycle involves two distinct steps: (1) CO32--promoted C-H carboxylation, in which the hydrocarbon substrate is deprotonated by the supported M2CO3 and reacts with CO2 to form a supported carboxylate (RCO2M); and (2) methylation, in which RCO2M reacts with methanol and CO2 to form an isolable methyl ester with concomitant regeneration of M2CO3.

10.
Nature ; 550(7674): 96-100, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28892810

RESUMO

Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(ii) sites. Functioning via a mechanism by which neighbouring iron(ii) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

11.
J Am Chem Soc ; 138(43): 14371-14379, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27704846

RESUMO

Metal-organic frameworks are a new class of heterogeneous catalysts in which molecular-level control over both the immediate and long-range chemical environment surrounding a catalytic center can be readily achieved. Here, the oxidation of cyclohexane to cyclohexanol and cyclohexanone is used as a model reaction to investigate the effect of a hydrophobic pore environment on product selectivity and catalyst stability in a series of iron-based frameworks. Specifically, expanded analogues of Fe2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) were synthesized and evaluated, including the biphenyl derivative Fe2(dobpdc) (H4dobpdc = 4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid), the terphenyl derivative Fe2(dotpdc) (H4dotpdc = 4,4″-dihydroxy-[1,1':4',1″-terphenyl]-3,3″-dicarboxylic acid), and three modified terphenyl derivatives in which the central ring is replaced with tetrafluoro-, tetramethyl-, or di-tert-butylaryl groups. Within these five materials, a remarkable 3-fold enhancement of the alcohol:ketone (A:K) ratio and an order of magnitude increase in turnover number are achieved by simply altering the framework pore diameter and installing nonpolar functional groups near the iron site. Mössbauer spectroscopy, kinetic isotope effect, and gas adsorption measurements reveal that variations in the A:K selectivities arise from differences in the cyclohexane adsorption enthalpies of these frameworks, which become more favorable as the number of hydrophobic residues and thus van der Waals interactions increase.


Assuntos
Cicloexanos/química , Ferro/química , Compostos Organometálicos/química , Adsorção , Ácidos Carboxílicos/química , Catálise , Modelos Moleculares , Conformação Molecular , Oxirredução , Porosidade
12.
Chemistry ; 22(40): 14297-307, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27529415

RESUMO

By employing the mixed-component, solid-solution approach, various functionalized ditopic isophthalate (ip) defect-generating linkers denoted 5-X-ipH2 , where X=OH (1), H (2), NH2 (3), Br (4), were introduced into the mixed-valent ruthenium analogue of [Cu3 (btc)2 ]n (HKUST-1, btc=benzene-1,3,5-tricarboxylate) to yield Ru-DEMOFs (defect-engineered metal-organic frameworks) of the general empirical formula [Ru3 (btc)2-x (5-X-ip)x Yy ]n . Framework incorporation of 5-X-ip was confirmed by powder XRD, FTIR spectroscopy, ultrahigh-vacuum IR spectroscopy, thermogravimetric analysis, (1) H NMR spectroscopy, N2 sorption, and X-ray absorption near edge structure. Interestingly, Ru-DEMOF 1 c with 32 % framework incorporation of 5-OH-ip shows the highest BET surface area (≈1300 m(2) g(-1) , N2 adsorption, 77 K) among all materials (including the parent framework [Ru3 (btc)2 Yy ]n ). The characterization data are consistent with two kinds of structural defects induced by framework incorporation of 5-X-ip: modified paddlewheel nodes featuring reduced ruthenium sites (Ru(δ+) , 0<δ<2, type A) and missing nodes leading to enhanced porosity (type B). Their relative abundances depend on the choice of the functional group X in the defect linkers. Defects A and B also appeared to play a key role in sorption of small molecules (i.e., CO2 , CO, H2 ) and the catalytic properties of the materials (i.e., ethylene dimerization and the Paal-Knorr reaction).

13.
Angew Chem Int Ed Engl ; 55(30): 8605-9, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27249784

RESUMO

A chromium(II)-based metal-organic framework Cr3 [(Cr4 Cl)3 (BTT)8 ]2 (Cr-BTT; BTT(3-) =1,3,5-benzenetristetrazolate), featuring coordinatively unsaturated, redox-active Cr(2+) cation sites, was synthesized and investigated for potential applications in H2 storage and O2 production. Low-pressure H2 adsorption and neutron powder diffraction experiments reveal moderately strong Cr-H2 interactions, in line with results from previously reported M-BTT frameworks. Notably, gas adsorption measurements also reveal excellent O2 /N2 selectivity with substantial O2 reversibility at room temperature, based on selective electron transfer to form Cr(III) superoxide moieties. Infrared spectroscopy and powder neutron diffraction experiments were used to confirm this mechanism of selective O2 binding.

14.
J Am Chem Soc ; 138(22): 7161-70, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180991

RESUMO

The air-free reaction of CoCl2 with 1,3,5-tri(1H-1,2,3-triazol-5-yl)benzene (H3BTTri) in N,N-dimethylformamide (DMF) and methanol leads to the formation of Co-BTTri (Co3[(Co4Cl)3(BTTri)8]2·DMF), a sodalite-type metal-organic framework. Desolvation of this material generates coordinatively unsaturated low-spin cobalt(II) centers that exhibit a strong preference for binding O2 over N2, with isosteric heats of adsorption (Qst) of -34(1) and -12(1) kJ/mol, respectively. The low-spin (S = 1/2) electronic configuration of the metal centers in the desolvated framework is supported by structural, magnetic susceptibility, and computational studies. A single-crystal X-ray structure determination reveals that O2 binds end-on to each framework cobalt center in a 1:1 ratio with a Co-O2 bond distance of 1.973(6) Å. Replacement of one of the triazolate linkers with a more electron-donating pyrazolate group leads to the isostructural framework Co-BDTriP (Co3[(Co4Cl)3(BDTriP)8]2·DMF; H3BDTriP = 5,5'-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)), which demonstrates markedly higher yet still fully reversible O2 affinities (Qst = -47(1) kJ/mol at low loadings). Electronic structure calculations suggest that the O2 adducts in Co-BTTri are best described as cobalt(II)-dioxygen species with partial electron transfer, while the stronger binding sites in Co-BDTriP form cobalt(III)-superoxo moieties. The stability, selectivity, and high O2 adsorption capacity of these materials render them promising new adsorbents for air separation processes.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Oxigênio/química , Pirazóis/química , Triazóis/química , Cristalografia por Raios X , Modelos Moleculares
15.
Inorg Chem ; 55(10): 4924-34, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27136308

RESUMO

We report electronic, vibrational, and magnetic properties, together with their structural dependences, for the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its derivatives, Fe2(O)2(dobdc) and Fe2(OH)2(dobdc)-species arising in the previously proposed mechanism for the oxidation of ethane to ethanol using N2O as an oxidant. Magnetic susceptibility measurements reported for Fe2(dobdc) in an earlier study and reported in the current study for Fe(II)0.26[Fe(III)(OH)]1.74(dobdc)(DMF)0.15(THF)0.22, which is more simply referred to as Fe2(OH)2(dobdc), were used to confirm the computational results. Theory was also compared to experiment for infrared spectra and powder X-ray diffraction structures. Structural and magnetic properties were computed by using Kohn-Sham density functional theory both with periodic boundary conditions and with cluster models. In addition, we studied the effects of different treatments of the exchange interactions on the magnetic coupling parameters by comparing several approaches to the exchange-correlation functional: generalized gradient approximation (GGA), GGA with empirical Coulomb and exchange integrals for 3d electrons (GGA+U), nonseparable gradient approximation (NGA) with empirical Coulomb and exchange integrals for 3d electrons (NGA+U), hybrid GGA, meta-GGA, and hybrid meta-GGA. We found the coupling between the metal centers along a chain to be ferromagnetic in the case of Fe2(dobdc) and antiferromagnetic in the cases of Fe2(O)2(dobdc) and Fe2(OH)2(dobdc). The shift in magnetic coupling behavior correlates with the changing electronic structure of the framework, which derives from both structural and electronic changes that occur upon metal oxidation and addition of the charge-balancing oxo and hydroxo ligands.

16.
J Am Chem Soc ; 138(17): 5594-602, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27097297

RESUMO

A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 µbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin Fe(II) centers of the framework convert to octahedral, low-spin Fe(II) centers upon CO coordination. Desorption of CO converts the Fe(II) sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, and magnetic susceptibility measurements. Importantly, the spin state change is selective for CO and is not observed in the presence of other gases, such as H2, N2, CO2, CH4, or other hydrocarbons, resulting in unprecedentedly high selectivities for CO adsorption for use in CO/H2, CO/N2, and CO/CH4 separations and in preferential CO adsorption over typical strongly adsorbing gases like CO2 and ethylene. While adsorbate-induced spin state transitions are well-known in molecular chemistry, particularly for CO, to our knowledge this is the first time such behavior has been observed in a porous material suitable for use in a gas separation process. Potentially, this effect can be extended to selective separations involving other π-acids.

17.
J Am Chem Soc ; 137(17): 5770-81, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25882096

RESUMO

The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.


Assuntos
Complexos de Coordenação/química , Etano/química , Etanol/síntese química , Compostos de Ferro/química , Magnésio/química , Oxigênio/química , Sítios de Ligação , Catálise , Etanol/química , Modelos Moleculares , Oxirredução , Teoria Quântica
18.
J Am Chem Soc ; 136(34): 12119-29, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25130365

RESUMO

The well-known frameworks of the type M2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) have numerous potential applications in gas storage and separations, owing to their exceptionally high concentration of coordinatively unsaturated metal surface sites, which can interact strongly with small gas molecules such as H2. Employing a related meta-functionalized linker that is readily obtained from resorcinol, we now report a family of structural isomers of this framework, M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni; m-dobdc(4-) = 4,6-dioxido-1,3-benzenedicarboxylate), featuring exposed M(2+) cation sites with a higher apparent charge density. The regioisomeric linker alters the symmetry of the ligand field at the metal sites, leading to increases of 0.4-1.5 kJ/mol in the H2 binding enthalpies relative to M2(dobdc). A variety of techniques, including powder X-ray and neutron diffraction, inelastic neutron scattering, infrared spectroscopy, and first-principles electronic structure calculations, are applied in elucidating how these subtle structural and electronic differences give rise to such increases. Importantly, similar enhancements can be anticipated for the gas storage and separation properties of this new family of robust and potentially inexpensive metal-organic frameworks.


Assuntos
Cobalto/química , Hidrogênio/química , Ferro/química , Magnésio/química , Manganês/química , Níquel/química , Compostos Organometálicos/síntese química , Ácidos Ftálicos/química , Adsorção , Sítios de Ligação , Estrutura Molecular , Compostos Organometálicos/química , Espectrofotometria Infravermelho , Termogravimetria , Difração de Raios X
19.
Nat Chem ; 6(7): 590-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24950328

RESUMO

Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.


Assuntos
Etano/química , Etanol/química , Ferro/química , Modelos Moleculares , Oxirredução
20.
Inorg Chem ; 52(22): 13123-31, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24175913

RESUMO

The iron-57 Mössbauer spectra of the linear, two-coordinate complexes, [K(crypt-222)][Fe(C(SiMe3)3)2], 1, and Fe(C(SiMe3)3)2, 2, were measured between 5 and 295 K under zero applied direct current (dc) field. These spectra were analyzed with a relaxation profile that models the relaxation of the hyperfine field associated with the inversion of the iron cation spin. Because of the lifetime of the measurement (10(-8) to 10(-9) s), iron-57 Mössbauer spectroscopy yielded the magnetization dynamics of 1 and 2 on a significantly faster time scale than was previously possible with alternating current (ac) magnetometry. From the modeling of the Mössbauer spectral profiles, Arrhenius plots between 5 and 295 K were obtained for both 1 and 2. The high-temperature regimes revealed Orbach relaxation processes with U(eff) = 246(3) and 178(9) cm(-1) for 1 and 2, respectively, effective relaxation barriers which are in agreement with magnetic measurements and supporting ab initio calculations. In 1, two distinct high-temperature regimes of magnetic relaxation are observed with mechanisms that correspond to two distinct single-excitation Orbach processes within the ground-state spin-orbit coupled manifold of the iron(I) ion. For 2, Mössbauer spectroscopy yields the temperature dependence of the magnetic relaxation in zero applied dc field, a relaxation that could not be observed with zero-field ac magnetometry. The ab initio calculated Mössbauer hyperfine parameters of both 1 and 2 are in excellent agreement with the observed hyperfine parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA