Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
Environ Pollut ; 353: 124168, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761878

RESUMO

Multiple odour nuisance in livestock farming is a notorious problem that has a significant impact on the living environment of surrounding communities. Adsorbents based on metal-organic framework (MOF) materials show great promise for controlling odour pollution, as they offer a high specific surface area, a controllable structure and an abundance of active sites. However, the MOF formation process is prone to problems such as pore clogging or collapse and reduced porosity, which limits its further application. In this study, a series of odour adsorbents were prepared by in situ growth of NH2-UiO-66 on tea stem biochar (TSBC) using a hydrothermal method and named UiO (Zr)-TSBCx. The physical and chemical properties and composition of UiO (Zr)-TSBCx have been systematically characterized using SEM, TEM, XRD, FT-IR, N2 adsorption-desorption and XPS. The release of odours from the pig farm effluent was monitored using in-situ continuous Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), and the obtained primary compositions were tested for further adsorption. In dynamic adsorption experiments focused on butyric acid, UiO (Zr)-TSBC2 showed a high adsorption capacity of 3.99 × 105 µg/g and exceptional structural stability. UiO (Zr)-TSBC2 showed variable adsorption efficiencies for different odorous gases, with the best performance for the removal of ammonia, toluene and butyric acid. It also demonstrated the ability to rapidly mitigate instantaneous high concentrations of hydrogen sulfide (H2S), methanethiol and toluene resulting from agitation. Additionally, based on the relationship between the adsorption amount and the structural characteristics of the adsorbent as well as the nature of the odours, a possible adsorption mechanism of UiO (Zr)-TSBC2 for a variety of odours released from pig farm effluent was proposed. This work demonstrates a novel approach to promote deodorization applications in livestock and poultry farming environments by the in-situ growth of NH2-UiO-66 on biochar prepared from tea stem.

2.
Chem Asian J ; : e202400443, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773630

RESUMO

Two polyhedral silver-thiolate clusters, [S@Ag16(Tab)10(MeCN)8](PF6)14 (Ag16) and [Ag12(Tab)6(DMF)12](PF6)12 (Ag12), were synthesized by using electroneutral Tab species as protective ligands (Tab = 4-(trimethylammonio)benzenethiolate, DMF = N,N-dimethylformamide, MeCN = acetonitrile). Ag16 has a decahedral shape composed of eight pentagon {Ag5} units and two square {Ag4} units. The structure of Ag12 is a cuboctahedron, a classical Archimedean structure composed of six triangular faces and eight square faces. The former configuration is discovered in silver-thiolate cluster for the first time, possibly benefited from the more flexible coordination between the Tab ligand and Ag+ facilitated by the electropositive -N(CH3)3 substituent group. Third-order nonlinear optical studies show that both clusters in DMF exhibit reverse saturate absorption response under the irradiation of 532 nm laser.

3.
Int J Biol Macromol ; 270(Pt 2): 132251, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729488

RESUMO

The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.

4.
Chemosphere ; 358: 142179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692364

RESUMO

Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 µg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.


Assuntos
Bacillus , Reatores Biológicos , Estações do Ano , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bacillus/metabolismo , China , Biodegradação Ambiental , Cosméticos/análise , Produtos Domésticos/análise , Ácidos Alcanossulfônicos/análise , Monitoramento Ambiental , Esgotos
5.
Crit Rev Food Sci Nutr ; : 1-17, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693696

RESUMO

Lipid-based delivery systems (LDS) have emerged as cornerstone techniques for bolstering the bioavailability of lipophilic bioactive compounds, addressing challenges related to solubility, stability, and absorption. This critical review examined a substantial dataset of 6,907 scientific articles and 3,021 patents from 2001-2023, elucidating the multifaceted evolution of LDS, with a particular focus on its industrial and patent-driven perspective. Notably, there were pronounced surges in functional food patent applications in 2004, 2011, and 2019. The trajectory revealed a shift from foundational nanoemulsions to more complex structures, such as double/multiple emulsions, solid lipid nanoparticles, Pickering emulsions, and bigels. The review further identified the top 10 leading institutions shaping this domain. Technologies like spray-drying, microfluidics, and phase gelation had revolutionized the landscape, resulting in refined sensory experiences, innovative reduced-fat formulations, enriched beverages, tailor-made infant nutrition, and nuanced release mechanisms for flavors. The review also spotlighted current research frontiers, notably Pickering emulsions, bigels, and multiple emulsions. These emerging technologies not only exemplified the ongoing innovation in the field but also underscored their potential in reshaping the future landscape of value-added functional foods.

6.
Heliyon ; 10(7): e28742, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590882

RESUMO

Cognitive ability, as an early human capital, has always been an important research object in modern education and labor economics. Despite growing awareness of the importance of height in individual growth and development, there are few empirical studies on height and cognitive ability. Using the data from the China Education Panel Survey, this paper examined the impact of height on the cognitive ability of adolescents and explored the reasons behind the Chinese pursuit of height growth and the potential impact mechanism. In this paper, comprehensive analysis ability was taken as the representative of cognitive ability. The empirical results showed that height was positively correlated with cognitive ability. From the perspective of the influence mechanism, the hypothesis that height reflected self-esteem, health, non-cognitive ability, and other influences on cognitive ability was excluded. To correct the errors that endogenous problems may cause, we used the PSM method and "age at first menstruation " and "age at first wet dream" as instrumental variables to correct them. The results showed that height still affected cognitive ability, with taller people having higher cognitive ability.

7.
Angew Chem Int Ed Engl ; : e202404129, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651974

RESUMO

Designing luminophores bright in both isolate species and aggregate states is of great importance in many emerging cutting-edge applications. However, the conventional luminophores either emit in isolate species but quench in aggregate state or emit in aggregate state but darken in isolate species. Here we demonstrate that the precise regulation of noncovalent interactions can realize luminophores bright in both isolate species and aggregate states. It is firstly discovered that the intra-cluster interaction enhances the emission of atomically precise Au25(pMBA)18 (pMBA = 4-mercaptobenzoic acid), a nanoscale luminophore, while the inter-cluster interaction quenches the emission. The emission enhancing strategies are then well-designed by both introducing exogenous substances to block inter-cluster interaction and surface manipulation of Au25(pMBA)18 at the molecular level to enhance intra-cluster interaction, opening new possibilities to controllably enhance the luminophore's photoluminescence in both isolate species and aggregate states in different phases including aqueous solution, solid state and organic solvents.

8.
Phys Chem Chem Phys ; 26(15): 11867-11879, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567659

RESUMO

Spiro-hydrocarbons are potentially a type of novel alternative jet fuel due to their high density and net heat of combustion. In this work, the pyrolysis study of two spiro-hydrocarbons (spiro[cyclopropane-1,6'-tricyclo[3.2.1.02,4]octane] (C10H14) as Fuel 1 and spiro[bicyclo[2.2.1]heptane-2,1'-cyclopropane] (C9H14) as Fuel 2) is performed via molecular dynamics (MD) simulations, with a neural network potential energy surface (NNPES), deep potential (DP) model, adopted. The data set for the DP model of each fuel is constructed after 31 and 27 iterations, respectively. The high precision of the DP model is demonstrated, and the temperature transferability of each model is observed. The overall pyrolysis performance is evaluated with the fuel decomposition rate, showing that both fuels have comparable gas-reactivity to commercial aviation fuels, such as JP-10. The reaction networks of initial pyrolysis for Fuels 1 and 2 are constructed, and the contribution of each pathway is discussed. Fuel 1 tends to form an unsaturated six-membered ring structure, while Fuel 2 generates unsaturated open-chain hydrocarbons. Further analyses of the MD results provide time-evolution information on each component in the pyrolysis species pool. Compared to Fuel 1, the initial pyrolysis of Fuel 2 leads to more hydrogen, alkenes, and alkanes, as well as fewer monocyclic aromatic hydrocarbons (MAHs), demonstrating a reduced tendency for afterward coking. This work might contribute to the development of the mechanism of the two spiro-hydrocarbons and guide the research of other similar structural fuels.

10.
J Agric Food Chem ; 72(18): 10355-10365, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38620073

RESUMO

The genus Bifidobacterium has been widely used in functional foods for health promotion due to its beneficial effects on human health, especially in the gastrointestinal tract (GIT). In this study, we characterize the anti-inflammatory potential of the probiotic strain Bifidobacterium pseudocatenulatum G7, isolated from a healthy male adult. G7 secretion inhibited inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Moreover, oral administration of bacteria G7 alleviated the severity of colonic inflammation in dextran sulfate sodium (DSS)-treated colitis mice, which was evidenced by a decreased disease activity index (DAI) and enhanced structural integrity of the colon. The 16S rRNA gene sequencing result illustrated that the G7 alleviated DSS-induced gut microbiota dysbiosis, accompanied by the modulated bile acids and short-chain fatty acid (SCFA) levels. Overall, our results demonstrated the potential anti-inflammatory effects of Bifidobacterium pseudocatenulatum G7 on both in vitro and in vivo models, which provided a solid foundation for further development of a novel anti-inflammatory probiotic.


Assuntos
Anti-Inflamatórios , Bifidobacterium pseudocatenulatum , Colite , Microbioma Gastrointestinal , Probióticos , Probióticos/administração & dosagem , Probióticos/farmacologia , Camundongos , Animais , Células RAW 264.7 , Masculino , Anti-Inflamatórios/administração & dosagem , Humanos , Colite/microbiologia , Colite/terapia , Colite/induzido quimicamente , Bifidobacterium pseudocatenulatum/genética , Bifidobacterium pseudocatenulatum/química , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Ácidos Graxos Voláteis/metabolismo , Colo/microbiologia , Colo/imunologia
11.
Food Res Int ; 184: 114228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609215

RESUMO

There is a growing interest in employing whole food-based strategies to prevent chronic diseases, owing to the potential synergistic interactions among various bioactive components found within whole foods. The current research aimed to determine inhibitory effects of the whole edible mushroom Pleurotus eryngii (WPE) on high-fat diet (HFD)-induced obesity in mice. Our results showed that dietary intake of WPE significantly inhibited the abnormal gain of body weight and adipose tissue weight, improved glucose tolerance, and ameliorated the serum biochemical parameters in HFD-fed mice. The histological analysis illustrated that the severity of non-alcoholic fatty liver induced by HFD was significantly reduced by WPE. Oral intake of WPE profoundly modulated the mRNA levels of hepatic genes involved in lipid metabolism and also increased the level of short-chain fatty acids in the mouse cecum. Moreover, WPE alleviated the HFD-induced gut microbiota dysbiosis, increasing the abundance of beneficial bacteria (Akkermansia, Lactobacillus, Bifidobacterium, and Sutteralla), and decreasing the harmful ones (rc4-4, Dorea, Coprococcus, Oscillospira, and Ruminococcus). These findings presented new evidence supporting that WPE could be used as a whole food-based strategy to protect against obesity and obesity-driven health problems.


Assuntos
Microbioma Gastrointestinal , Pleurotus , Animais , Camundongos , Disbiose , Metabolismo dos Lipídeos , Obesidade/prevenção & controle , Ingestão de Alimentos
12.
Anal Chem ; 96(17): 6784-6793, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632870

RESUMO

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Assuntos
Antígenos de Superfície da Hepatite B , Análise Espectral Raman , Antígenos de Superfície da Hepatite B/sangue , Análise Espectral Raman/métodos , Humanos , Vírus da Hepatite B/isolamento & purificação , Nanopartículas Metálicas/química , Hepatite B/sangue , Hepatite B/diagnóstico , Propriedades de Superfície , Limite de Detecção
13.
Brain Behav Immun ; 119: 14-27, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548184

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most prevalent type of dementia, still lacks disease-modifying treatment strategies. Recent evidence indicates that maintaining gut microbiota homeostasis plays a crucial role in AD. Targeted regulation of gut microbiota, including probiotics, is anticipated to emerge as a potential approach for AD treatment. However, the efficacy and mechanism of multi-strain probiotics treatment in AD remain unclear. METHODS: In this study, 6-month-old senescence-accelerated-mouse-prone 8 (SAMP8) and senescence-accelerated-mouse-resistant 1 (SAMR1) were utilized. The SAMP8 mice were treated with probiotic-2 (P2, a probiotic mixture of Bifidobacterium lactis and Lactobacillus rhamnosus) and probiotic-3 (P3, a probiotic mixture of Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus rhamnosus) (1 × 109 colony-forming units) once daily for 8 weeks. Morris water maze (MWM) and novel object recognition (NOR) tests were employed to assess the memory ability. 16S sequencing was applied to determine the composition of gut microbiota, along with detecting serum short-chain fatty acids (SCFAs) concentrations. Neural injury, Aß and Tau pathology, and neuroinflammation level were assessed through western blot and immunofluorescence. Finally, potential molecular mechanisms was explored through transcriptomic analysis and western blotting. RESULTS: The MWM and NOR test results indicated a significant improvement in the cognitive level of SAMP8 mice treated with P2 and P3 probiotics compared to the SAMP8 control group. Fecal 16S sequencing revealed an evident difference in the α diversity index between SAMP8 and SAMR1 mice, while the α diversity of SAMP8 mice remained unchanged after P2 and P3 treatment. At the genus level, the relative abundance of ten bacteria differed significantly among the four groups. Multi-strain probiotics treatment could modulate serum SCFAs (valeric acid, isovaleric acid, and hexanoic acid) concentration. Neuropathological results demonstrated a substantial decrease in neural injury, Aß and Tau pathology and neuroinflammation in the brain of SAMP8 mice treated with P3 and P2. Transcriptomic analysis identified the chemokine signaling pathway as the most significantly enriched signaling pathway between SAMP8 and SAMR1 mice. Western blot test indicated a significant change in the phosphorylation level of downstream AKT/GSK-3ß between the SAMP8 and SAMR1 groups, which could be reversed through P2 and P3 treatment. CONCLUSIONS: Multi-strain probiotics treatment can ameliorate cognitive impairment and pathological change in SAMP8 mice, including neural damage, Aß and Tau pathology, and neuroinflammation. This effect is associated with the regulation of the phosphorylation of the AKT/GSK-3ß pathway.

14.
Environ Toxicol Chem ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551298

RESUMO

Most current research focusing on the health risk assessments of particulate polycyclic aromatic hydrocarbons (PAHs) have not analyzed the size distributions and human respiratory deposition rates. In the present study, size-separated particulate matter (PM) was collected in the coastal area of Ningbo using an Anderson eight-stage air sampler over a 1-year period (2014-2015). The 16 US Environmental Protection Agency priority PAHs associated with PM were pretreated with rapid solvent extraction and analyzed by gas chromatography-mass spectrometry. The respiratory exposure assessment was determined using the multiple-path particle dosimetry (MPPD) model. The results show that all PAHs exhibited bimodal distribution with one mode peak in accumulation mode (0.43-0.65 µm) and another mode peak in coarse mode (4.7-5.8 µm). In addition, a low coefficient of divergence of PAHs between PM2.1 and PM2.1-10 indicated a high spatial heterogeneity in source factor contribution and formation mechanism. The deposition fluxes (tracheobronchial + pulmonary) of PM were highest for children in the size range of 3.3 µm < particle diameter (Dp) < 9 µm, while for males and females the highest fluxes occurred in the size range of 1.1 µm < Dp < 2.1 µm. The depositions of coarse PM in children were significantly higher than those in adults. The benzo[a]pyrene equivalent (BaPeq) depositions of dibenz[a,h]anthracene ranged from 1.4e-04 to 0.015 ng h-1, which were highest among the PAHs. The PAHs on particles with Dp >4.7 µm contributed approximately three times more to children than to males and females. Therefore, the toxicity of coarse PM to children needed attention. The incremental lifetime cancer risks (ILCR) for children, males, and females were estimated to be 2.92 × 10-7, 1.82 × 10-7, and 2.38 × 10-7, respectively, which were below the cancer risk guideline value (10-6). These ILCR values were much lower than the risks calculated without considering particle size distributions and respiratory depositions. The combination of the size-segregated sampling technique and the MPPD model can effectively avoid the overestimation of human respiratory exposure. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.

15.
Chemosphere ; 354: 141641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460850

RESUMO

The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Áreas Alagadas , Ecossistema , Multimídia , Monitoramento Ambiental , Água , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
16.
Food Chem ; 448: 139062, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531297

RESUMO

Avenanthramide-C (AVN-C) is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. Avenanthramide-C is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. This study evaluated the potential of yeast cell (YC) and yeast cell wall (YCW) capsules as delivery systems for stabilizing AVN-C. It was observed that these yeast capsules possessed the ellipsoidal morphology and intact structure without visual pores. Additionally, the YCW capsules exhibited higher encapsulation and loading capacity due to the large internal space. The interaction of yeast capsules with AVN-C involved the hydrophobic interactions and hydrogen bonding. Moreover, the loading of AVN-C induced high hydrophobicity inside the yeast capsules, which helped to protect AVN-C against degradation and release AVN-C in a slow and sustained manner in the simulated gastrointestinal tract. The YCW capsules have potential as controlled delivery system for AVN-C, which could be further used as a nutraceutical and added to functional foods.


Assuntos
Avena , Cápsulas , Parede Celular , Saccharomyces cerevisiae , ortoaminobenzoatos , Avena/química , ortoaminobenzoatos/química , Cápsulas/química , Parede Celular/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Biomarcadores , Interações Hidrofóbicas e Hidrofílicas
17.
J Agric Food Chem ; 72(14): 7818-7831, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466922

RESUMO

This study aimed to compare the structural features and functional properties of polysaccharides from single-clove garlic (SGPs) and multiclove garlic (MGPs) and to establish their structure-function relationships. Both SGPs and MGPs were identified as fructans consisting mainly of →1)-ß-d-Fruf (2→ and →6)-ß-d-Fruf (2→ residues but differed in average molecular weights (6.76 and 5.40 kDa, respectively). They shared similar thermodynamic properties, X-ray diffraction patterns, and high gastrointestinal digestive stability. These two purified fructans could dose-dependently scavenge free radicals, reduce oxidized metals, and effectively alleviate metronidazole-induced oxidative stress and CuSO4-induced inflammation in zebrafish via inhibiting the overexpression of inflammation-related proteins and cytokines. SGPs showed lower free radical scavenging activity in vitro than MGPs but higher antioxidant and anti-inflammatory activities in vivo. Taken together, the molecular weight was the main structural difference between the two garlic fructans of different varieties, which is a potential reason for their differences in biological activities.


Assuntos
Alho , Syzygium , Animais , Frutanos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Alho/química , Peixe-Zebra/metabolismo , Inflamação
18.
ACS Omega ; 9(8): 8754-8762, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434854

RESUMO

The ubiquitous aflatoxin B1 (AFB1) contamination in foods and other complex matrices has brought great challenges for onsite monitoring. In this study, an ultrasensitive Nafion-immobilized functionalized multiwalled carbon nanotube (MWCNT)-based electrochemical (EC) immunosensor was developed for trace AFB1 detection. The introduced Nafion film could steadily stabilize functionalized MWCNTs with uniform distribution and tiling on the surface of a Au electrode. Functionalized MWCNTs with a large specific surface area, numerous active sites to couple with abundant anti-AFB1 monoclonal antibodies (mAbs), and high conductivity served as the signal amplifier for remarkably enhancing the sensing performance of the immunosensor. In the presence of AFB1, it was specifically captured by mAbs to reduce the amplified current signals, which were recorded by differential pulse voltammetry for the accurate quantitation of AFB1. Because of the synergistic effects of Nafion on the stabilization of functionalized MWCNTs as signal enhancers, the developed EC immunosensor exhibited an extremely high selectivity, excellent sensitivity with a limit of detection as low as 0.021 ng/mL, and a wide dynamic range of 0.05-100 ng/mL, besides fascinating merits of easy construction, low cost, good stability in 7 days, and good reusability. The anti-interference ability of the immunosensor was verified against three other mycotoxins, and the practicability and accuracy were confirmed by measuring AFB1 in fortified malt, lotus seed, and hirudo samples with a satisfactory recovery of 92.08-104.62%. This novel immunosensing platform could be extended to detect more mycotoxins in complex matrices to ensure food safety.

19.
Macromol Rapid Commun ; : e2400045, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365211

RESUMO

Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.

20.
Sci Total Environ ; 917: 170585, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301779

RESUMO

Rice stem is the sole conduit for cadmium translocation from underground to aboveground. The presence of cadmium can trigger responses of rice stem multi-phenotype, affecting metabolism, reducing yield, and altering composition, which is related to crop growth, food safety, and new energy utilization. Exploring the adversity response of plant phenotypes can provide a reliable assessment of growth status. However, the phytotoxicity and mechanism of cadmium stress on rice stem remain unclear. Here, we systematically revealed the response mechanisms of cadmium accumulation, adversity physiology, and morphological characteristic in rice stem under cadmium stress for the first time with concentration gradients of CK, 5, 25, 50, and 100 µM, and duration gradients of Day 5, Day 10, Day 15, and Day 20. The results indicated that cadmium stress led to a significant increase in cadmium accumulation, accompanied by the adversity response in stem phenotypes. Specifically, cadmium can cause fluctuations in soluble protein and disturbance of malondialdehyde (MDA), which reflects lipid peroxidation induced by cadmium accumulation. Lipid peroxidation inhibited rice growth by causing (1) a reduction in stem length, diameter, and weight, (2) suppression of air cavity, vascular bundle, parenchyma, and epidermal hair, and (3) disruption of cell structure. Furthermore, rapid detection of cadmium was realized based on the combination of laser-induced breakdown spectroscopy (LIBS) and machine learning, which took less than 3 min. The established qualitative model realized the precise discrimination of cadmium stress degrees with a prediction accuracy exceeding 92 %, and the quantitative model achieved the outstanding prediction effect of cadmium, with Rp of 0.9944. This work systematically revealed the phytotoxicity of cadmium on rice stem multi-phenotype from a novel perspective of lipid peroxidation and realized the rapid detection of cadmium in rice stem, which provided the technical tool and theoretical foundation for accurate prevention and efficient control of heavy metal risks in crops.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Fenótipo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA