Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710148

RESUMO

Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.


Assuntos
Carbono , Celulose , Hidrogéis , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Celulose/química , Adsorção , Hidrogéis/química , Carbono/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Pontos Quânticos/química
2.
Int J Biol Macromol ; : 132567, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782314

RESUMO

Mercury pollution in waters attracts lots of attention due to its serious toxicity and high bioenrichment and many efforts have been devoted in the development of adsorbents for mercury detection and removal. Herein, a cellulose-based adsorbent Cell-TriA-HQ is functionalized with quinoline fluorophore by covalent immobilization through "Click reaction" with high yield. In addition to the admirable adsorptive performance, the prepared adsorbent exhibits excellent selectivity and sensitivity towards Hg (II) in water that the detection limit for Hg (II) is determined to be as low as 1.92 × 10-7 M. The sensitive fluorescence enhancement response is considered to be resulted from the inhibition of photo-induced electron transfer between triazole and quinoline groups and the reinforcement of structural rigidity. The easy manipulation along with excellent performance of adsorption capacity, detective ability and reusability for the multifunctional adsorbent makes it potential in mercury monitoring and removal from aqueous solutions in the field of water treatment.

3.
Int J Biol Macromol ; 270(Pt 1): 132155, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729462

RESUMO

This study focuses on enhancing the strength and water stability of paper straws through a novel approach involving a binary emulsion of lignin-based polyurethane and chitosan. Kraft lignin serves as the raw material for synthesizing a blocked waterborne polyurethane, subsequently combined with carboxylated chitosan to form a stable binary emulsion. The resulting emulsion, exhibiting remarkable stability over at least 6 months, is applied to the base paper. Following emulsion application, the paper undergoes torrefaction at 155 °C. This process deblocks isocyanate groups, enabling their reaction with hydroxyl groups on chitosan and fibers, ultimately forming ester bonds. This reaction significantly improves the mechanical strength and hydrophobicity of paper straws. The composite paper straws demonstrate exceptional mechanical properties, including a tensile strength of 47.21 MPa, Young's modulus of 4.33 GPa, and flexural strength of 32.38 MPa. Notably, its water stability is greatly enhanced, with a wet tensile strength of 40.66 MPa, surpassing commercial paper straws by 8 folds. Furthermore, the composite straw achieves complete biodegradability within 120 days, outperforming conventional paper straws in terms of environmental impact. This innovative solution presents a promising and sustainable alternative to plastic straws, addressing the urgent need for eco-friendly products.

4.
Adv Colloid Interface Sci ; 328: 103178, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38735101

RESUMO

Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.

5.
J Colloid Interface Sci ; 666: 529-539, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613975

RESUMO

Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved. The existance of zinc ions also significantly improved the carbon retention rate and inhibited structural shrinkage, thus making the carbon aerogels retain ultra-high elasticity and fatigue resistance after compression. Moreover, the carbon aerogel possessed excellent piezoresistive pressure sensing performance with a wide detection range of 0-7.8 kPa, high sensitivity of 11.04 kpa-1, low detection limit (2 % strain), fast response (112 ms), and good durability (over 1,000 cycles). Based on these excellent properties, the carbon aerogel pressure sensors were further successfully used for human motion monitoring, from joint motion to and speech recognition.


Assuntos
Alginatos , Carbono , Celulose , Elasticidade , Géis , Dispositivos Eletrônicos Vestíveis , Carbono/química , Géis/química , Humanos , Celulose/química , Alginatos/química , Anisotropia , Tamanho da Partícula , Propriedades de Superfície , Zinco/química
6.
Int J Biol Macromol ; 267(Pt 1): 131512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608972

RESUMO

Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have gained significant attention for their potential in constructing diverse functional materials, However, MXene is easily oxidized and weakly bound to the cellulose matrix, which pose challenges in developing MXene-decorated non-woven fabric with strong bonding and stable thermal management properties. Herein, we successfully prepared deep eutectic supramolecular polymer (DESP) functionalized MXene to address these issues. MXene can be wrapped with DESP to be insulated from water and protected from being oxidized. Subsequently, we achieved an efficient in-situ deposition of DESP-functionalized MXene onto fibers through a combination of dip coating and photopolymerization technique. The resulting nonwoven fabric (CNs-DESP@M) exhibited excellent photothermal conversion properties along with rapid thermal response and functional stability. Interestingly, the interface bonding between MXene and the fiber surface was significantly enhanced due to the abundant pyrogallol groups in DESP, resulting in the composite textile exhibiting commendable mechanical properties (2.68 MPa). Moreover, the as-prepared textile demonstrates outstanding bactericidal efficacy against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The multifunctional textile, created through a facile and efficient approach, demonstrates remarkable potential for applications in smart textiles, catering to the diverse needs of individuals in the future.


Assuntos
Antibacterianos , Celulose , Escherichia coli , Polímeros , Staphylococcus aureus , Têxteis , Celulose/química , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Fenômenos Mecânicos , Temperatura , Viabilidade Microbiana/efeitos dos fármacos
7.
Carbohydr Polym ; 335: 122067, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616090

RESUMO

Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.

8.
Int J Biol Macromol ; 266(Pt 2): 131080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537850

RESUMO

Despite the tremendous efforts on developing antibacterial wearable textile materials containing Ti3C2Tx MXene, the singular antimicrobial mechanism, poor antibacterial durability, and oxidation susceptibility of MXene limits their applications. In this context, flexible multifunctional cellulosic textiles were prepared via layer-by-layer assembly of MXene and the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8). Specifically, the introduction of highly conductive MXene enhanced the interface interactions between the ZIF-8 layer and cellulose fibers, endowing the green-based materials with outstanding synergistic photothermal/photodynamic therapy (PTT/PDT) activity and adjustable electromagnetic interference (EMI) shielding performance. In-situ polymerization formed a MXene/ZIF-8 bilayer structure, promoting the generation of reactive oxygen species (ROS) while protecting MXene from oxidation. The as-prepared smart textile exhibited excellent bactericidal efficacy of >99.99 % against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 5 min of NIR (300 mW cm-2) irradiation which is below the maximum permissible exposure (MPE) limit. The sustained released Zn2+ from the ZIF-8 layer achieved a bactericidal efficiency of over 99.99 % within 48 h without NIR light. Furthermore, this smart textile also demonstrated remarkable EMI shielding efficiency (47.7 dB). Clearly, this study provides an elaborate strategy for designing and constructing multifunctional cellulose-based materials for a variety of applications.


Assuntos
Antibacterianos , Celulose , Escherichia coli , Imidazóis , Estruturas Metalorgânicas , Staphylococcus aureus , Têxteis , Celulose/química , Celulose/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Escherichia coli/efeitos dos fármacos , Zeolitas/química , Zeolitas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Fotoquimioterapia/métodos
9.
Carbohydr Polym ; 333: 121947, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494214

RESUMO

The rapid development of hydrogels has garnered significant attention in health monitoring and human motion sensing. However, the synthesis of multifunctional conductive hydrogels with excellent strain/pressure sensing and photoresponsiveness remains a challenge. Herein, the conductive hydrogels (BPTP) with excellent mechanical properties, fatigue resistance and photoresponsive behavior composed of polyacrylamide (PAM) matrix, 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) reinforcement and polydopamine-modified black phosphorus (BP@PDA) photosensitizer are prepared through a facile free-radical polymerization approach. The PDA adhered to the BP surface by π-π stacking promotes the optical properties of BP while also preventing BP oxidation from water. Through hydrogen bonding interactions, TOCNs improve the homogeneous dispersion of BP@PDA nanosheets and the mechanical toughness of BPTP. Benefiting from the synergistic effect of PDA and TOCNs, the conductive BPTP integrates superior mechanical performances, excellent photoelectric response and photothermal conversion capability. The BPTP-based sensor with high cycling stability demonstrates superior strain sensitivity (GF = 6.0) and pressure sensing capability (S = 0.13 kPa-1) to monitor various human activities. Therefore, this work delivers an alternative construction strategy for generating high-performance conductive hydrogels as multifunctional wearable sensors.


Assuntos
Celulose Oxidada , Dispositivos Eletrônicos Vestíveis , Humanos , Condutividade Elétrica , Hidrogéis , Ligação de Hidrogênio
10.
J Colloid Interface Sci ; 661: 879-887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330660

RESUMO

Improving mechanical strength and frost-resistance is an important research direction in the field of hydrogel materials. Herein, using bacterial nanocellulose (BC) as a reinforcing agent and polyvinyl alcohol (PVA) as a polymer matrix, a frost-resistant organohydrogel was constructed via the freezing-thawing method in a new binary solvent system of N, N-dimethylformamide and water (DMF-H2O), which was designed according to the Hansen Solubility Parameter. Owing to the solvent-induced crystallization effect that led to the enhanced 3D hydrogen bonding network during the freezing-thawing process, the optimal organohydrogel achieved excellent mechanical properties with the tensile strength of 2,974 kPa and the stretchability of 277 % at room temperature, respectively. In the visiblelight range, the organohydrogel demonstrated high transmittance. Moreover, the presence of a DMF-H2O binary solvent endows it with frost-resistance, retaining the tensile strength of 508 kPa and a stretchability of 190 % even at -70 °C, respectively. This kind of transparent, frost-resistant organohydrogel has potential uses in harsh settings due to its great mechanical strength.

11.
Int J Biol Macromol ; 263(Pt 1): 130176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368977

RESUMO

Smart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.75 nm to 144.81 nm, and the pure water flux can be regulated from 342 to 2118 L·m-2·h-1 with remarkable variation in the pH range of 1-11 and temperature range of 20-60 °C. The adjustability of pore size is able to achieve the gradient selective separation of particles and polymers with different sizes. In addition, owing to the underwater superoleophobicity and the nanoscale pore structure, the membrane separation efficiencies of emulsified oils are higher than 99 %. Moreover, the controllable pore size endows the membrane with good self-cleaning performance. This nanocellulose-based smart gating membrane has potential applications in the fields of controllable permeation, selective separation, fluid transport, and drug/chemical controlled release systems.


Assuntos
Polímeros , Água , Temperatura , Água/química , Polímeros/química , Celulose , Concentração de Íons de Hidrogênio
12.
Anal Chim Acta ; 1292: 342211, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309843

RESUMO

Radioactive uranium leaks into natural water bodies mainly in the form of uranyl ions (UO22+), posing ecological and human health risks. Fluorescent europium-based metal-organic frameworks (Eu-MOFs) have been demonstrated to be effective fluorescent sensors for UO22+, but the large size, powder state and poor dispersity limit their further application. In this work, fluorescent Eu-MOFs were in-situ grown on TEMPO-oxidized cellulose nanofibers (TOCNFs), which is the first time that spherical Eu-MOF crystals with sizes below 10 nm were prepared. Fluorescence spectral analysis revealed a nine-fold increase in the fluorescence intensity of TOCNF@Eu-MOF compared to Eu-MOF. The nanocomposites achieved rapid and sensitive fluorescence quenching to UO22+ through the "antenna effect" and unsaturated Lewis basic sites on the ligands binding with UO22+. Moreover, TOCNF@Eu-MOF demonstrated excellent selectivity and anti-interference for UO22+ detection. For the nanopaper-based sensor made from TOCNF@Eu-MOF, the Stern-Volmer quenching constant (KSV) was calculated as 8.21 × 104 M-1, and the lowest limit of detection (LOD) was 6.6 × 10-7 M, significantly lower than the 1.32 × 10-6 M of Eu-MOFs. In addition, the nanopaper exhibited good fluorescence stability and cyclic detection performance, enabling the rapid and convenient detection of UO22+ in the aqueous phase within 30 s by simple dipping.

13.
Int J Biol Macromol ; 262(Pt 1): 129854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309390

RESUMO

In this study, for the first time, a new Zr-metal-organic framework (MOF) with strong aggregation-induced emission was successfully grown on bacterial cellulose (BC) using an in situ synthesis method, yielding the fluorescent composite nanofiber BC@Zr-MOF. The BC with abundant hydroxyl groups, which can be uniformly wrapped in the interior of the MOF layer to form BC@Zr-MOF, was used as the growth template. The resulting composite nanofibers had a higher specific surface area (1, 116 m2/g), stronger fluorescence emission and better pH stability than MOF particles. In addition, BC@Zr-MOF exhibited selective recognition and enrichment of Cr2O72- in the aqueous phase and a high adsorption capacity of 90 mg/g. Moreover, because of the high aspect ratio and good tensile strength (6.73 N/mm2), BC@Zr-MOF nanofibers could be readily made into freestanding nanopapers via vacuum filtration, thus solving the molding and recycling problems of MOFs. The facilely prepared test paper could rapidly, sensitively and selectively detect Cr2O72- with the limit of detection (LOD) of 41.8 nM, which is nearly 500 times lower than that of the national drinking water standard. Moreover, the LOD of BC@Zr-MOF nanopapers, when used in combination with circulating filtration, decreases to 6.9 nM owing to the adsorption-enrichment effect.


Assuntos
Estruturas Metalorgânicas , Adsorção , Celulose , Cromo , Corantes
14.
Carbohydr Polym ; 330: 121764, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368079

RESUMO

The rheological properties of a substance depend greatly on its morphology, and rod-shaped cellulose nanocrystals (RCNCs) and cellulose nanofibrils (CNFs) have been extensively studied for their rheological properties. Nevertheless, the rheological properties of disc-shaped cellulose nanocrystals (DCNCs) with crystalline allomorph II derived from mercerized cellulose remain unknown yet. This work investigated the DCNCs' rheological properties in depth using steady-shear and oscillation measurements. At the same concentration, DCNC's suspension viscosity is lower than that of RCNC; RCNC has an instinct viscosity of 258.2, while DCNC has 187.9. Comparing RCNC suspensions with cellulose nanorods, DCNC has a lower aspect ratio and exhibits a distinct steady shear behavior. Under polarized film, DCNC suspension cannot self-assemble into chiral or liquid crystal phases, and with increasing concentrations, the system transitions from an isotropic phase to a gel phase. Oscillation sweeps demonstrate that the gel transition occurs at 7 %-8 %. Based on thixotropic recovery sweep outcomes, the high-stress oscillations enhance the network structure of DCNC suspensions, which is significantly different from that of RCNC suspensions. Results demonstrate the unique properties of DCNC, highlighting its application as a rheological modifier.

15.
Carbohydr Polym ; 330: 121832, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368087

RESUMO

In this work, new N, O-codoped chitosan-derived carbon adsorbents (CKC-x, x refer to the calcination temperature) were synthesized over a simple process of chitosan-KOH aerogel production and simultaneous carbonization/activation of the aerogel. CKC-700 was characterized by sheet-like morphology (even containing a portion of carbon nano-sheet of 3 nm thickness), high porosity and specific surface area (1702.1 m2/g), and pyridinic/pyrrolic/graphitic N groups. The simultaneous carbonization/activation of chitosan-KOH aerogel prepared by top-down coagulation of chitosan aqueous solution by KOH aqueous solution rendered these beneficial characteristics. CKC-700 exhibited a superior adsorption capacity for Rhodamine B (RhB) to other chitosan-derived carbon adsorbents, and the maximum adsorption capacity for RhB of 594 mg/g was achieved at 55 °C. CKC-700 also possessed reasonable reusability for the removal of RhB, and the removal efficiency was still above 95 % in the fifth cycle. The effects of adsorption temperature and time, adsorbent dose, organic dye concentration, and solution pH on the adsorption capacity of CKC-700 were studied. Moreover, the adsorption isotherm, kinetics, thermodynamics, and the adsorption mechanism of RhB on CKC-700 were discussed. In addition, CKC-700 also showed favorable adsorption performance for methylene blue (441 mg/g), methyl orange (457 mg/g), and congo red (500 mg/g) at around 25 °C.

16.
Adv Mater ; : e2310174, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245861

RESUMO

Probiotics with diverse and crucial functions and properties have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, we present a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, we discuss the therapeutic applications of engineered probiotics, and the future trends toward developing engineered probiotics with advanced features and improved health benefits. This article is protected by copyright. All rights reserved.

17.
J Colloid Interface Sci ; 660: 923-933, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280285

RESUMO

The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 µWh cm-2 at 1101.7 µW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.

18.
ACS Nano ; 18(5): 4329-4342, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261787

RESUMO

Lignin, as an abundant aromatic biopolymer in plants, has great potential for medical applications due to its active sites, antioxidant activity, low biotoxicity, and good biocompatibility. In this work, a simple and ecofriendly approach for lignin fractionation and modification was developed to improve the antitumor activity of lignin. The lignin fraction KL-3 obtained by the lignin gradient acid precipitation at pH = 9-13 showed good cytotoxicity. Furthermore, the cell-feeding lignin after additional structural modifications such as demethylation (DKL-3), sulfonation (SL-3), and demethylsulfonation (DSKL-3) could exhibit higher glutathione responsiveness in the tumor microenvironment, resulting in reactive oxygen species accumulation and mitochondrial damage and eventually leading to apoptosis in HepG2 cells with minimal damage to normal cells. The IC50 values for KL-3, SL-3, and DSKL-3 were 0.71, 0.57, and 0.41 mg/mL, respectively, which were superior to those of other biomass extractives or unmodified lignin. Importantly, in vivo experiments conducted in nude mouse models demonstrated good biosafety and effective tumor destruction. This work provides a promising example of constructing carrier-free functionalized lignin antitumor materials with different structures for inhibiting the growth of human hepatocellular carcinoma (HepG2) cells, which is expected to improve cancer therapy outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Poliuretanos , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Células Hep G2 , Lignina/farmacologia , Microambiente Tumoral
19.
Int J Biol Macromol ; 257(Pt 1): 128648, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061518

RESUMO

Interfacing cellulose nanocrystals (CNCs) with fluorescent materials provides more possibilities for constructing of sensory/imaging platforms in biomedical applications. In this work, by harnessing the efficient extraction accompanied modification of CNCs and adjustable optical properties of carbon dots (CDs), we report the constructions and emission wavelength tuning of fluorescent CNCs (F-CNCs) composed of CNC nano-scaffolds and CDs. The as-prepared CNCs are densely decorated with citric acid (CA), which plays the role of carbon source for the in-situ synthesis of CDs on CNCs. For the F-CNCs carrying blue, green, and red emissive CDs, ethylenediamine (EDA), urea, and thiourea are the N or N/S sources. Fingerprints of chemical groups, morphological characters, and redox activities are resolved to elaborate the optical mechanisms of CDs with varying emission colors. The emission wavelength is adjusted by either changing the particle size or introducing new emission centers. Both are primarily achieved via precursor engineering. The F-CNCs reveal quantum yields (QYs) >22 % and negligible fluorescence quenching (< 6 %) upon continuous excitation as long as 24 h. Benefited from their cell membrane penetration capability, the F-CNCs with different emission wavelengths were challenged for multiplexed cytoplasm imaging.


Assuntos
Nanopartículas , Pontos Quânticos , Pontos Quânticos/química , Corantes Fluorescentes/química , Celulose/química , Nanopartículas/química , Carbono/química
20.
Int J Biol Macromol ; 254(Pt 1): 127707, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923046

RESUMO

The pollution of heavy metals such as Cu2+ is still serious and the discharge of sewage of Cu2+ will cause damage to soil environment and human health. Herein, a biomass-based solid-state fluorescence detection platform (CPU-CDs) was developed as fluorescent sensor for detection Cu2+ via fluorescence and colorimetric dual-model methods in real time. CPU-CDs was composed of xylan-derived CDs (U-CDs) and cotton cellulose paper, which exhibiting good reusability, non-toxicity, excellent fluorescence characteristics and high biocompatibility. Further, CPU-CDs displayed high effectiveness and sensitivity for Cu2+ with the detection limit as low as 0.14 µM, which was well below U.S. EPA safety levels (20 µM). Practical application indicated that CPU-CDs could achieve precision response of Cu2+ change in real environment water samples with good recovery range of 90 %-119 %. This strategy demonstrated a promising biomass solid-state fluorescence sensor for Cu2+ detection for water treatment research, which is of great significance in dealing with water pollution caused by heavy metal ions.


Assuntos
Pontos Quânticos , Humanos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Xilanos , Celulose , Carbono , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA