Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38367406

RESUMO

An LC-MS/MS method was developed and validated for the simultaneous determination of the carboxylic acid ester precursor HD56 and the active product HD561 in cynomolgus monkey plasma. Then, the pharmacokinetic characteristics of both compounds following single and multiple i.g. administrations in cynomolgus monkeys were elucidated. In the method, chromatographic separation was achieved with a C18 reversed-phase column and the target quantification was carried out by an electrospray ionization (ESI) source coupled with triple quadrupole mess detector in positive ionization mode with multiple reaction monitoring (MRM) approach. Using the quantification method, the in vitro stability of HD56 in plasma and HD56 pharmacokinetic behavior after i.g. administration in cynomolgus monkey were investigated. It was approved that HD56 did convert into HD561 post-administration. The overall systemic exposure of HD561 post-conversion from HD56 accounted for only about 17% of HD56. After repeated administration at the same dose, there was no significant difference in exposure levels of both HD56 and HD561. However, after multiple dosing, the exposure of HD56 tended to decrease while that of HD561 tended to increase, resulting in a 30% in the exposure ratio. Remarkably, with a carboxylesterase (CES) activity profile akin to humans, the observed in vivo pharmacokinetic profile in cynomolgus monkeys holds promise for predicting HD56/HD561 PK profiles in humans.


Assuntos
Pró-Fármacos , Espectrometria de Massas em Tandem , Animais , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Macaca fascicularis , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes
2.
Acta Pharm Sin B ; 13(6): 2715-2735, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425039

RESUMO

Various c-mesenchymal-to-epithelial transition (c-MET) inhibitors are effective in the treatment of non-small cell lung cancer; however, the inevitable drug resistance remains a challenge, limiting their clinical efficacy. Therefore, novel strategies targeting c-MET are urgently required. Herein, through rational structure optimization, we obtained novel exceptionally potent and orally active c-MET proteolysis targeting chimeras (PROTACs) namely D10 and D15 based on thalidomide and tepotinib. D10 and D15 inhibited cell growth with low nanomolar IC50 values and achieved picomolar DC50 values and >99% of maximum degradation (Dmax) in EBC-1 and Hs746T cells. Mechanistically, D10 and D15 dramatically induced cell apoptosis, G1 cell cycle arrest and inhibited cell migration and invasion. Notably, intraperitoneal administration of D10 and D15 significantly inhibited tumor growth in the EBC-1 xenograft model and oral administration of D15 induced approximately complete tumor suppression in the Hs746T xenograft model with well-tolerated dose-schedules. Furthermore, D10 and D15 exerted significant anti-tumor effect in cells with c-METY1230H and c-METD1228N mutations, which are resistant to tepotinib in clinic. These findings demonstrated that D10 and D15 could serve as candidates for the treatment of tumors with MET alterations.

3.
Front Chem ; 11: 1185224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292175

RESUMO

Introduction: Quorum sensing (QS) is a bacterial intracellular and intercellular communication system that regulates virulence factor production, biofilm formation, and antibiotic sensitivity. Quorum-sensing inhibitors (QSIs) are a novel class of antibiotics that can effectively combat antibiotic resistance. Autoinducer-2 (AI-2) is a universal signaling molecule that mediates inter- and intraspecies QS systems among different bacteria. Furthermore, LsrK plays an important role in regulating the activity and stability of the intracellular AI-2 signaling pathway. Thus, LsrK is considered an important target for the development of QSIs. Methods: We designed a workflow integrating molecular dynamic (MD) simulations, virtual screening, LsrK inhibition assays, cell-based AI-2-mediated QS interference assays, and surface plasmon resonance (SPR)-based protein affinity assays to screen for potential LsrK kinase inhibitors. Results: MD simulation results of the LsrK/ATP complex revealed hydrogen bonds and salt bridge formation among four key residues, namely, Lys 431, Tyr 341, Arg 319, and Arg 322, which are critical for the binding of ATP to LsrK. Furthermore, MD simulation results indicated that the ATP-binding site has an allosteric pocket that can become larger and be occupied by small molecule compounds. Based on these MD simulation results, a constraint of forming at least one hydrogen bond with Arg 319, Arg 322, Lys 431, or Tyr 341 residues was introduced when performing virtual screening using Glide's virtual screening workflow (VSW). In the meantime, compounds with hydrophobic group likely to interact with the allosteric hydrophobic pocket are preferred when performing visual inspection. Seventy-four compounds were selected for the wet laboratory assays based on virtual screening and the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds. LsrK inhibition assays revealed 12 compounds inhibiting LsrK by more than 60% at a 200 µM concentration; four of these (Y205-6768, D135-0149, 3284-1358, and N025-0038) had IC50 values below 50 µM and were confirmed as ATP-competitive inhibitors. Six of these 12 LsrK inhibitors exhibited high AI-2 QS inhibition, of which, Y205-6768 had the highest activity with IC50 = 11.28 ± 0.70 µM. The SPR assay verified that compounds Y205-6768 and N025-0038 specifically bound to LsrK. MD simulation analysis of the docking complexes of the four active compounds with LsrK further confirmed the importance of forming hydrogen bonds and salt bridges with key basic amino acid residues including Lys 431, Tyr 341, Arg 319, and Arg 322 and filling the allosteric hydrophobic pocket next to the purine-binding site of LsrK. Discussion: Our study clarified for the first time that there is an allosteric site near the ATP-binding site of Lsrk and that it enriches the structure-activity relationship information of Lsrk inhibitors. The four identified compounds showed novel structures, low molecular weights, high activities, and novel LsrK binding modes, rendering them suitable for further optimization for effective AI-2 QSIs. Our work provides a valuable reference for the discovery of QSIs that do not inhibit bacterial growth, thereby avoiding the emergence of drug resistance.

4.
Pharmaceuticals (Basel) ; 16(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242520

RESUMO

Quorum sensing (QS) is a cell-to-cell communication mechanism that regulates bacterial pathogenicity, biofilm formation, and antibiotic sensitivity. Among the identified quorum sensing, AI-2 QS exists in both Gram-negative and Gram-positive bacteria and is responsible for interspecies communication. Recent studies have highlighted the connection between the phosphotransferase system (PTS) and AI-2 QS, with this link being associated with protein-protein interaction (PPI) between HPr and LsrK. Here, we first discovered several AI-2 QSIs targeting the LsrK/HPr PPI site through molecular dynamics (MD) simulation, virtual screening, and bioassay evaluation. Of the 62 compounds purchased, eight compounds demonstrated significant inhibition in LsrK-based assays and AI-2 QS interference assays. Surface plasmon resonance (SPR) analysis confirmed that the hit compound 4171-0375 specifically bound to the LsrK-N protein (HPr binding domain, KD = 2.51 × 10-5 M), and therefore the LsrK/HPr PPI site. The structure-activity relationships (SARs) emphasized the importance of hydrophobic interactions with the hydrophobic pocket and hydrogen bonds or salt bridges with key residues of LsrK for LsrK/HPr PPI inhibitors. These new AI-2 QSIs, especially 4171-0375, exhibited novel structures, significant LsrK inhibition, and were suitable for structural modification to search for more effective AI-2 QSIs.

5.
ACS Appl Mater Interfaces ; 15(22): 26407-26416, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218650

RESUMO

Paraquat (PQ) is exceptionally toxic to the human body. PQ ingestion can cause severe organ damage with a mortality rate of 50-80%, resulting from the absence of effective antidotes and detoxification solutions. Herein, a host-guest formulation is proposed, in which ergothioneine (EGT), an antioxidant drug, was encapsulated by carboxylatopillar[6]arene (CP6A) to achieve a combinational therapy for PQ poisoning. Nuclear magnetic resonance (NMR) and fluorescence titration were employed to confirm the complexation between CP6A and EGT as well as PQ with robust affinities. In vitro studies proved that EGT/CP6A significantly reduced PQ toxicity. Treatment with EGT/CP6A could effectively relieve organ damage caused by PQ ingestion and enhance the normalization of hematological and biochemical parameters. The host-guest formulation EGT/CP6A also improved the survival ratio in PQ-poisoned mice. These favorable outcomes originated from synergistic effects that PQ triggered the release of EGT to combat peroxidation damage and excess PQ was engulfed within the cavity of CP6A.


Assuntos
Anti-Infecciosos , Ergotioneína , Surfactantes Pulmonares , Camundongos , Humanos , Animais , Paraquat/química , Antídotos , Ergotioneína/farmacologia , Antioxidantes , Penicilinas
6.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049669

RESUMO

The stimulator-of-interferon-gene (STING) protein is involved in innate immunity. The drug DMXAA (5,6-dimethylxanthenone-4-acetic acid) proved to be a potent murine-STING (mSTING) agonist but had little effect on human-STING (hSTING). In this paper, we draw upon the comparison of different crystal structures and protein-ligand interaction relationships analysis to venture the hypothesis that the drug design of DMXAA variants has the potential to convert STING agonists to inhibitors. Based on our previous discovery of two DMXAA analogs, 3 and 4 (both could bind to STING), we structurally optimized them and synthesized new derivatives, respectively. In binding assays, we found compounds 11 and 27 to represent STING binders that were superior to the original structures and discussed the structure-activity relationships. All target compounds were inactive in cellular assays for the screening of STING agonistic activity. Gratifyingly, we identified 11 and 27 as STING inhibitors with micromolar activity in both hSTING and mSTING pathways. In addition, 11 and 27 inhibited the induction of interferon and inflammatory cytokines activated by 2'3'-cGAMP without apparent cytotoxicity. These findings break the rigid thinking that DMXAA provides the structural basis specifically for STING agonists and open up more possibilities for developing novel STING agonists or inhibitors.


Assuntos
Proteínas de Membrana , Xantonas , Camundongos , Humanos , Animais , Proteínas de Membrana/metabolismo , Xantonas/química , Imunidade Inata , Interferons
7.
Molecules ; 27(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630812

RESUMO

Hydroxamate, as a zinc-binding group (ZBG), prevails in the design of histone deacetylase 6(HDAC6) inhibitors due to its remarkable zinc-chelating capability. However, hydroxamate-associated genotoxicity and mutagenicity have limited the widespread application of corresponding HDAC6 inhibitors in the treatment of human diseases. To avoid such side effects, researchers are searching for novel ZBGs that may be used for the synthesis of HDAC6 inhibitors. In this study, a series of stereoisomeric compounds were designed and synthesized to discover non-hydroxamate HDAC6 inhibitors using α-amino amide as zinc-ion-chelating groups, along with a pair of enantiomeric isomers with inverted L-shaped vertical structure as cap structures. The anti-proliferative activities were determined against HL-60, Hela, and RPMI 8226 cells, and 7a and its stereoisomer 13a exhibited excellent activities against Hela cells with IC50 = 0.31 µM and IC50 = 5.19 µM, respectively. Interestingly, there is a significant difference between the two stereoisomers. Moreover, an evaluation of cytotoxicity toward human normal liver cells HL-7702 indicated its safety for normal cells. X-ray single crystal diffraction was employed to increase insights into molecule structure and activities. It was found that the carbonyl of the amide bond is on the different side from the amino and pyridine nitrogen atoms. To identify possible protein targets to clarify the mechanism of action and biological activity of 7a, a small-scale virtual screen using reverse docking for HDAC isoforms (1-10) was performed and the results showed that HDAC6 was the best receptor for 7a, suggesting that HDAC6 may be a potential target for 7a. The interaction pattern analysis showed that the α-amino amide moiety of 7a coordinated with the zinc ion of HDAC6 in a bidentate chelate manner, which is similar to the chelation pattern of hydroxamic acid. Finally, the molecular dynamics simulation approaches were used to assess the docked complex's conformational stability. In this work, we identified 7a as a potential HDAC6 inhibitor and provide some references for the discovery of non-hydroxamic acid HDAC6 inhibitors.


Assuntos
Amidas , Inibidores de Histona Desacetilases , Amidas/farmacologia , Células HeLa , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Zinco/metabolismo
8.
Bioorg Chem ; 124: 105831, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512420

RESUMO

Bardoxolone methyl (CDDO-Me) has exhibited positive therapeutic effects in clinical trials for diabetic nephropathy (DN), but serious safety risks in the heart exist because of the potential off-target response resulting from the highly active part of CDDO-Me. Herein, we reported a novel strategy to prepare Cathepsin B (CTSB) cleavable and improved water-soluble prodrugs of CDDO-Me. CTSB linkers connection to the highly active α-cyano-α, ß-unsaturated ketone (CUK) part of CDDO-Me with the incorporation of polyethylene glycol (PEG) moieties, provided a series of prodrugs of CDDO-Me without CUK part exposure. Theoretically, these prodrugs shielding CUK part can be stably circulated and finally cleaved by CTSB in lysosomes to release CDDO-Me. In this paper, preliminary curative effects and safety of all prodrugs were determined. Wherein, prodrug 20 displayed relatively better activities than other prodrugs in inhibiting the release of NO from RAW264.7 cells, activating Keap1-Nrf2-ARE signaling pathway and inhibiting NF-κB signaling pathway, which were comparable to CDDO-Me. More importantly, prodrug 20 showed relatively lower human ether-a-go-go-related gene (hERG) inhibitory activity compared with CDDO-Me, which demonstrated prodrug 20 might be safer than CDDO-Me. In conclusion, the novel strategy of shielding CUK part with CTSB linkers provided a new idea for solving the limitations of CDDO-Me in clinical application.


Assuntos
Ácido Oleanólico , Pró-Fármacos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Pró-Fármacos/farmacologia , Transdução de Sinais
9.
Molecules ; 27(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458626

RESUMO

Radiotherapy is a vital approach for brain tumor treatment. The standard treatment for glioblastoma (GB) is maximal surgical resection combined with radiotherapy and chemotherapy. However, the non-sensitivity of tumor cells in the hypoxic area of solid tumors to radiotherapy may cause radioresistance. Therefore, radiotherapy sensitizers that increase the oxygen concentration within the tumor are promising for increasing the effectiveness of radiation. Inspired by hemoglobin allosteric oxygen release regulators, a series of novel phenoxyacetic acid analogues were designed and synthesized. A numerical method was applied to determine the activity and safety of newly synthesized compounds. In vitro studies on the evaluation of red blood cells revealed that compounds 19c (∆P50 = 45.50 mmHg) and 19t (∆P50 = 44.38 mmHg) improve the oxygen-releasing property effectively compared to positive control efaproxiral (∆P50 = 36.40 mmHg). Preliminary safety evaluation revealed that 19c exhibited no cytotoxicity towards HEK293 and U87MG cells, while 19t was cytotoxic toward both cells with no selectivity. An in vivo activity assay confirmed that 19c exhibited a radiosensitization effect on orthotopically transplanted GB in mouse brains. Moreover, a pharmacokinetic study in rats showed that 19c was orally available.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radiossensibilizantes , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Células HEK293 , Humanos , Camundongos , Oxigênio , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Ratos
10.
Front Microbiol ; 13: 791802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418956

RESUMO

Bacterial drug resistance caused by overuse and misuse of antibiotics is common, especially in clinical multispecies infections. It is of great significance to discover novel agents to treat clinical bacterial infections. Studies have demonstrated that autoinducer-2 (AI-2), a signal molecule in quorum sensing (QS), plays an important role in communication among multiple bacterial species and bacterial drug-resistance. Previously, 14 AI-2 inhibited compounds were selected through virtual screening by using the AI-2 receptor protein LuxP as a target. Here, we used Vibrio harveyi BB170 as a reporter strain for the preliminary screening of 14 inhibitors and compound Str7410 had higher AI-2 QS inhibition activity (IC50 = 0.3724 ± 0.1091 µM). Then, co-culture of Pseudomonas aeruginosa PAO1 with Staphylococcus aureus ATCC 25923 was used to evaluate the inhibitory effects of Str7410 on multispecies infection in vitro and in vivo. In vitro, Str7410 significantly inhibited the formation of mixed bacterial biofilms. Meanwhile, the combination of Str7410 with meropenem trihydrate (MEPM) significantly improved the susceptibility of mixed-species-biofilm cells to the antibiotic. In vivo, Str7410 significantly increased the survival rate of wild-type Caenorhabditis elegans N2 co-infected by P. aeruginosa PAO1 and S. aureus ATCC 25923. Real-time quantitative PCR analysis showed that Str7410 reduced virulence factor (pyocyanin and elastase) production and swarming motility of P. aeruginosa PAO1 by downregulating the expression of QS-related genes in strain PAO1 in co-culture with S. aureus ATCC 25923. Compound Str7410 is a candidate agent for treating drug-resistant multispecies infections. The work described here provides a strategy for discovering novel antibacterial drugs.

11.
J Med Chem ; 63(22): 13825-13850, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186040

RESUMO

A series of novel linear aliphatic amine-linked triaryl derivatives as inhibitors of PD-1/PD-L1 were designed, synthesized, and evaluated in vitro and in vivo. In this chemical series, compound 58 showed the most potent inhibitory activity and binding affinity with hPD-L1, with an IC50 value of 12 nM and a KD value of 16.2 pM, showing a binding potency approximately 2000-fold that of hPD-1. Compound 58 could bind with hPD-L1 on the cellular surface and competitively block the interaction of hPD-1 with hPD-L1. In a T cell function assay, 58 restored the T cell function, leading to increased IFN-γ secretion. Moreover, in a humanized mouse model, compound 58 significantly inhibited tumor growth without obvious toxicity and showed moderate PK properties after intravenous injection. These results indicated that 58 is a promising lead for further development of small-molecule PD-1/PD-L1 inhibitors for cancer therapy.


Assuntos
Antineoplásicos/síntese química , Antígeno B7-H1/antagonistas & inibidores , Desenho de Fármacos , Ácidos Graxos/síntese química , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Células RAW 264.7 , Ratos Sprague-Dawley , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Eur J Med Chem ; 194: 112252, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32244097

RESUMO

Due to the increasing resistance of Pseudomonas aeruginosa to most clinically relevant antimicrobials, it is challenging to treat bacterial infection with traditional antibiotics. Quorum sensing can regulate the production of biofilms and virulence factors which are closely related to bacterial resistance. Previously we synthesized a series of oxazolidinone compounds targeting the quorum-sensing transcriptional regulatory protein CviR and ZS-12 showed good activity against Chromobacterium violaceum CV026 quorum-sensing. In this study, eighteen 3-amino-2-oxazolidinone compounds were designed and synthesized using ZS-12 as the lead compound. We initially evaluated the inhibitory activities of novel oxazolidinone compounds against QS using C. violaceum CV026 as a reporter strain. Thirteen compounds showed good activities (IC50 range 3.69-63.58 µM) and YXL-13 inhibition was the most significant (IC50 = 3.686 ± 0.5790 µM) against biofilm formation and virulence factors determination of P. aeruginosa PAO1. In vitro, YXL-13 significantly inhibited the formation of PAO1 biofilm (range 42.98%-17.67%), the production of virulence factors (pyocyanin, elastase, rhamnolipid, and protease), and bacterial motility. Moreover, the combination of YXL-13 with an antibiotic (meropenem trihydrate) could significantly improve the antibiotic susceptibility of biofilm P. aeruginosa PAO1 cells. In vivo, YXL-13 significantly prolonged the lifespan of wildtype Caenorhabditis elegans N2 infected by P. aeruginosa PAO1. In conclusion, YXL-13 is a candidate agent for antibiotic-resistant P. aeruginosa PAO1and provides a method for finding new antibacterial drugs.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Oxazolidinonas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168938

RESUMO

Methylprednisolone (MP) is often used in the treatment of various kidney diseases, but overcoming the systemic side effects caused by its nonspecific distribution in the body is a challenge. This article reports the design, synthesis, and renal targeting of methylprednisolone-lysozyme (MPS-LZM). This conjugate was obtained by covalently linking MP with the renal targeting carrier LZM through a linker containing an ester bond, which could utilize the renal targeting of LZM to deliver MP to renal proximal tubular epithelial cells and effectively release MP. The reaction conditions for the preparation of the conjugate were mild, and the quality was controllable. The number of drug payloads per LZM was 1.1. Cell-level studies have demonstrated the safety and endocytosis of the conjugate. Further pharmacokinetic experiments confirmed that, compared with that of free MP, the conjugate increased the renal exposure (AUC0-t) of active MP from 17.59 to 242.18 h*ng/mL, and the targeting efficiency improved by approximately 14 times. Tissue and organ imaging further revealed that the conjugate could reach the kidneys quickly, and fluorescence could be detected in the kidneys for up to 12 h. This study preliminarily validates the feasibility of a renal targeting design strategy for MPS-LZM, which is expected to provide a new option for improving kidney-specific distribution of glucocorticoids.


Assuntos
Rim/citologia , Metilprednisolona/administração & dosagem , Muramidase/química , Animais , Células Cultivadas , Desenho de Fármacos , Humanos , Rim/química , Masculino , Metilprednisolona/química , Metilprednisolona/farmacocinética , Camundongos , Especificidade de Órgãos
14.
Bioorg Chem ; 95: 103556, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927317

RESUMO

STING (Stimulator of Interferon Genes) has become a focal point in immunology research and a target in drug discovery. The discovery of a potent human-STING agonist is expected to revolutionize current anti-virus or cancer immunotherapy. Inspired by the structure and function of murine STING-specific agonists (DMXAA and CMA), we rationally designed and synthesized four series of novel compounds for the enhancement of human sensitivity. In the cell-based assay, we identified six compounds from all the synthetic small molecules: 2g, 9g, and 12b are STING agonists that are efficacious across species, and all have the skeleton of acridone; 1b, 1c, and 12c just function in the murine STING pathway. Notably, 12b exhibits the best activity among the six agonists, and its inductions of both human and murine STING-dependent signalling are similar to that of 2'3'-cGAMP, which is a well-known STING inducer. While a protein assay indicated that 2 g, 9 g, and 12b could activate the pathway by directly binding human STING, 12b also displayed the strongest binding affinity. Additionally, our studies show that 12b can induce faster, more powerful, and more durable responses of assorted cytokines in a native system than 2'3'-cGAMP. Consequently, our team is the first to successfully modify murine STING agonists to obtain human sensitivity, and these results suggest that 12b is a potent direct-human-STING agonist. Additionally, the acridone analogues demonstrate tremendous potential in the treatment of tumours or viral infections.


Assuntos
Acridonas/química , Acridonas/farmacologia , Desenho de Fármacos , Proteínas de Membrana/antagonistas & inibidores , Acridonas/síntese química , Animais , Proteínas de Membrana/genética , Camundongos
15.
Molecules ; 24(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357453

RESUMO

Polymyxins are considered to be the last-line antibiotics that are used to treat infections caused by multidrug-resistant (MDR) gram-negative bacteria; however, the plasmid-mediated transferable colistin resistance gene (mcr-1) has rendered polymyxins ineffective. Therefore, the protein encoded by mcr-1, MCR-1, could be a target for structure-based design of inhibitors to tackle polymyxins resistance. Here, we identified racemic compound 3 as a potential MCR-1 inhibitor by virtual screening, and 26 compound 3 derivatives were synthesized and evaluated in vitro. In the cell-based assay, compound 6g, 6h, 6i, 6n, 6p, 6q, and 6r displayed more potent activity than compound 3. Notably, 25 µΜ of compound 6p or 6q combined with 2 µg·mL-1 colistin could completely inhibit the growth of BL21(DE3) expressing mcr-1, which exhibited the most potent activity. In the enzymatic assay, we elucidate that 6p and 6q could target the MCR-1 to inhibit the activity of the protein. Additionally, a molecular docking study showed that 6p and 6q could interact with Glu246 and Thr285 via hydrogen bonds and occupy well the cavity of the MCR-1 protein. These results may provide a potential avenue to overcome colistin resistance, and provide some valuable information for further investigation on MCR-1 inhibitors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Desenho de Fármacos , Fosfotransferases/química , Fosfotransferases/farmacologia , Proteínas de Bactérias/síntese química , Técnicas de Química Sintética , Simulação por Computador , Modelos Moleculares , Fosfotransferases/síntese química , Relação Estrutura-Atividade
16.
Sci Rep ; 9(1): 2000, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760797

RESUMO

To compare and evaluate the differences of stereoselective activity, the binding affinity, metabolism, transport and molecular docking of phencynonate isomers to muscarinic acetylcholine receptor (mAChR) were investigated in this study. The rotation stimulation and locomotor experiments were used to evaluate anti-motion sickness effects. The competitive affinity with [3H]-QNB and molecular docking were used for studying the interactions between the two isomers and mAChR. The stereoselective mechanism of isomers was investigated by incubation with rat liver microsomes, a protein binding assay and membrane permeability assay across a Caco-2 cell monolayer using a chiral column HPLC method. The results indicated that S-isomer was more effective against motion sickness and had not anxiogenic action at therapeutic doses. S-isomer has the higher affinity and activity for mAChR in cerebral cortex and acted as a competitive mAChR antagonist. The stereoselective elimination of S-isomer was primarily affected by CYP1B1 and 17A1 enzymes, resulting in a higher metabolic stability and slower elimination. Phencynonate S isomer, as a eutomer and central anticholinergic chiral drug, is a novel anti-motion sickness drug with higher efficacy and lower central side effect. Our data assisted the development of a novel drug and eventual use of S-isomer in clinical practice.


Assuntos
Compostos Aza/uso terapêutico , Antagonistas Colinérgicos/uso terapêutico , Glicolatos/uso terapêutico , Enjoo devido ao Movimento/tratamento farmacológico , Enjoo devido ao Movimento/prevenção & controle , Receptores Muscarínicos/efeitos dos fármacos , Animais , Compostos Aza/química , Células CACO-2 , Linhagem Celular Tumoral , Antagonistas Colinérgicos/química , Citocromo P-450 CYP1B1/metabolismo , Glicolatos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley
17.
J Nat Prod ; 81(8): 1752-1759, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30024750

RESUMO

Four new highly oxygenated p-terphenyls, hawaiienols A-D (1-4), have been isolated from cultures of Paraconiothyrium hawaiiense, a fungus associated with the Septobasidium-infected insect Diaspidiotus sp.; their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2-4 were assigned by single-crystal X-ray diffraction analysis using Cu Kα radiation and via electronic circular dichroism calculations, respectively. Compound 1 incorporated the first naturally occurring 4,7-dioxatricyclo[3.2.1.03,6]octane unit in its p-terphenyl skeleton and showed cytotoxicity toward six human tumor cell lines.


Assuntos
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Insetos/microbiologia , Compostos de Terfenil/química , Compostos de Terfenil/farmacologia , Animais , Ascomicetos/química , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Difração de Raios X
18.
Sci Rep ; 8(1): 6859, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700309

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

19.
Sci Rep ; 7(1): 15038, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118379

RESUMO

CCR4 is highly expressed on Th2 cells. CCR4 ligands include CCL22 and CCL17. Chemokine-like factor 1 can also mediate chemotaxis via CCR4. We designed and synthetized novel CCR4 antagonists, which were piperazinyl pyridine derivatives, for disrupting the interaction between three ligands and CCR4. We also determined whether these novel CCR4 antagonists could alleviate allergic asthma in a mouse. For identifying the potent compounds in vitro, we used chemotaxis inhibition and competition binding assays induced by CCL22, CCL17 and one of CKLF1's C-terminal peptides, C27. We found compound 8a which showed excellent potency in blocking the interaction of CCR4 and its three ligands. For studying the specificity of compounds, we chose chemotaxis inhibition assays with different receptors and ligands. We found compound 8a had excellent receptor specificity and exerted few influence on the interaction of other receptors and their ligands. In the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, compound 8a had no obvious cytotoxicity till the higher concentration (16 µM). For determining the potency of compounds in blocking the interaction of CCR4 in vivo, we used the ovalbumin induced allergic asthma model in mice. Our study demonstrated that CCR4 blockaded by compound 8a effectively attenuated airway hyperresponsiveness, airway eosinophilia and Th2 cytokines.


Assuntos
Asma/prevenção & controle , Piperazina/química , Pneumonia/prevenção & controle , Piridinas/farmacologia , Receptores CCR4/antagonistas & inibidores , Animais , Asma/metabolismo , Asma/fisiopatologia , Inibição de Migração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Piridinas/química , Receptores CCR4/metabolismo
20.
Anticancer Drugs ; 28(10): 1131-1140, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28926421

RESUMO

Cancer cells have an increased requirement for iron than normal cells, and iron chelators are under active consideration for cancer treatment. The metal-sequestering potential and antiproliferative mechanisms of a novel hydroxyphenyl hydrazone derivate YCL0426 were investigated here. Antiproliferative activity of YCL0426 was detected by MTT assay. The iron-sequestering potential was evaluated by ferrozine-Fe(II) sequestering assay and Fe(II) titration assay. Cell-cycle-arresting profile was checked by flow cytometry and the DNA synthesis status was evaluated by BrdU incorporation assay. SW480 cells stably expressing Rad51-EGFP fusion protein were used to evaluate the DNA damaging potential of the compound. The impact of extra Fe(II) supplement on compound activities was also examined. YCL0426 shows significant antiproliferative activity on 15 cancer cell lines with mean IC50 values of 5.25 µmol/l. YCL0426 displayed concentration-dependent Fe(II) sequestering ability in ferrozine-Fe(II) sequestering assay, and induced upregulation of transferrin receptor 1 and divalent metal transporter 1 expression in HepG2 cells, which are genes responsible for Fe(II) uptake. YCL0426 blocked DNA synthesis in BrdU incorporation assay, and arrested cell cycle at S or G1 phase. Besides, YCL0426 induced Rad51 foci formation and histone H2AX phosphorylation with EC50 values of 1.35 and 2.29 µmol/l, respectively, indicating the emergence of DNA damage. All these cellular responses, and even the growth-inhibiting activity of YCL0426, can be readily reversed by Fe(II) repletion, indicating that iron sequestering is responsible, at least in part, for the antiproliferative activity of YCL0426. YCL0426 is a potent iron chelator that exerts significant antiproliferative activities by inducing G1/S arrest and DNA damage.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Compostos Férricos/metabolismo , Hidrazonas/farmacologia , Quelantes de Ferro/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fase S/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA