Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 2): 132716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815941

RESUMO

Nanoparticle-containing sizing agents are essential for the overall performance of high-quality carbon fiber (CF) composites. However, the uneven dispersion of nanoparticles often leads to agglomeration on the surface of CF after sizing, consequently diminishing the material properties. In this study, the properties of cellulose nanofibers (CNFs) that can respond to magnetic and electric fields were utilized to achieve three-dimensional to one-dimensional orientations in CFs containing sizing agents. Cobalt ferrite (CoFe2O4) was utilized to enhance the response of CNFs to a magnetic field, and subsequently, it was combined with an electric field to attain a higher degree of orientation. The occurrence of nanoparticle agglomeration is diminished on CF surface, while establishing a structured network. The flexural strength and thermal conductivity of CF composites treated with CoFe2O4 self-assembled CNF sizing agent exhibit an increase of 54.23 % and 57.5 %, respectively, compared to those of desized CF composites, when subjected to magnetic and electric fields. Consequently, the approach can depolymerize the nano-fillers within the sizing agent and orient it into the carbon fiber under the influence of magnetic and electric fields, effectively improving the mechanical properties and thermal conductivity of the composite material.


Assuntos
Fibra de Carbono , Celulose , Campos Magnéticos , Nanofibras , Nanofibras/química , Celulose/química , Fibra de Carbono/química , Compostos Férricos/química , Cobalto/química , Eletricidade , Condutividade Térmica , Nanocompostos/química
2.
Int J Biol Macromol ; 260(Pt 1): 129457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232869

RESUMO

The chemical inertness of the carbon fiber (CF) surface results in suboptimal mechanical properties of the prepared composites. To address this issue, we employed a combination of tannic acid and 3-aminopropyltriethoxysilane mixture (TA-APTES) grafted sodium alginate (SA) as a medium to enhance the interfacial properties of composites through the growth of ZnO nanoparticles on CF surfaces. ZnO nanolayers with rod-like and flower-like structures were obtained by adjusting the pH of the reaction system (pH = 10 and 12, respectively). Characterization results show that in comparison with the untreated CF composites, in the flexural strength, flexural modulus, interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of the as-prepared CF/TA-APTES/SA/ZnO10 (nanorods) composites were improved by 40.8 %, 58.4 %, 44.9 % and 47.8 %, respectively. The prepared CF/TA-APTES/SA/ZnO12 (nanoflowers) composite showed an increase in flexural strength, flexural modulus, ILSS and IFSS by 39.8 %, 63.6 %, 47.3 % and 48.2 %, respectively. These positive results indicate that the ZnO nanolayers increase the interfacial phase area and fiber surface roughness, thereby enhancing mechanical interlocking and load transfer between the fibers and resin matrix. This work provides a novel interfacial modification method for preparing CF composites used in longer and more durable wind turbine blades.


Assuntos
Polifenóis , Óxido de Zinco , Fibra de Carbono/química , Teste de Materiais , Propriedades de Superfície , Resinas Compostas/química
3.
Colloids Surf B Biointerfaces ; 229: 113451, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451225

RESUMO

In clinical practice, the wound on the surface of the skin is prone to bacterial infection, for which healing of infected wounds has always been a tremendous challenge for clinics and research institutions. We developed a multifunctional bactericidal, recyclable, and slow-release graphene oxide-based hydrogel for bacterial wound healing and real-time monitoring of bacterial infection in this study. At the same time, the material has a sensing function, which can be used in the connection between the injured skin and the continuous detection equipment. QNGH (quaternarized N-halamine-grafted GO hydrogel) is manufactured by hydrogen bonding between quaternized N-halamine-modified graphene oxide and polyvinyl alcohol (PVA). The results show that in the mouse model of full-thickness skin repair, the hydrogel can continuously release germicidal ions and recyclability, promoting wound healing and contraction. Further, the graphene oxide-based hydrogel has excellent strain sensing performance. It detects the bending and stretching movements of different parts of the human body quickly, stably, and sensitively to show an excellent real-time monitoring performance of human motion. The sensing function of the hydrogel further broadens its application field. Therefore, this hydrogel material is expected to be a candidate material for sensing devices at the wound.


Assuntos
Infecções Bacterianas , Hidrogéis , Humanos , Animais , Camundongos , Hidrogéis/farmacologia , Cicatrização , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico
4.
ChemSusChem ; 13(21): 5711-5721, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32857460

RESUMO

Copper(II) oxide featuring a narrow bandgap and low toxicity has been frequently applied in the visible-light-driven photocatalytic hydrogen evolution, but it suffers from large intrinsic overpotential and low water adsorption capacity. Herein, we report a self-templated strategy for the preparation of carbon-doped CuO hollow spheres (C-CuO HSs) through thermal transformation of a hierarchical MOF. The hierarchical Cu-MOFs not only act as a template to form interior voids during the thermal transformation, but also serve as precursors to dope C atoms into the CuO lattice. The as-synthesized C-CuO HSs exhibits remarkable photocatalytic performance with a H2 evolution rate of 67.3 mmol/g/h and the apparent quantum efficiency of 25.3 % at 520 nm in the present of eosin-Y photosensitizer. The high performance of C-CuO HSs is attributed to the hierarchical porous structure and modulated electronic structure of CuO by C-doping with well exposed reactive sites, high water adsorption capability, and low water reduction reaction barrier. The results presented in this work might shed light on the design of high-performance photocatalysts for various energy-related applications.

5.
RSC Adv ; 10(56): 33675-33682, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35519072

RESUMO

Inspired by biology, underwater self-healing polymer composites with damage-healing visible agents were successfully designed and prepared. The healing agents, same as epoxy resin matrices, were encapsulated and embedded into a matrix that contained fluorescent latent curing agents. The results of investigation on healing properties revealed that the fluorescent latent curing agents and the microcapsules in the matrix play two roles. First, the matrix could be self-healed via a crosslinking reaction between the amine group and epoxy resin, in which the amine group could be released from the fluorescent latent curing agents (FLCAs) after exposure to water. Second, the fluorescent dyes released under water could indicate the scratches and healing area visually. Embedding 15 mass% microcapsules and 6 mass% FLCAs in self-healing materials yielded a healing efficiency of 85.6% and the most efficient fluorescence detection. Self-healing materials can be repaired underwater and they show the location of damage, which is of great significance in applications such as water conservation engineering, environmental treatment engineering, ship engineering and ocean engineering.

6.
Sci Rep ; 8(1): 6268, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674615

RESUMO

At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

7.
Colloids Surf B Biointerfaces ; 144: 319-326, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27108209

RESUMO

Magnetic recyclable antibacterial nanomaterials, i.e., magnetic amine N-halamine nanoparticles (Fe3O4@SiO2/CTMP NPs), were constructed by arming magnetic silica nanoparticles (Fe3O4@SiO2 NPs) with amine N-halamine (CTMP). Magnetic iron oxide nanoparticles were encapsulated into silica layers followed by anchoring antibacterial amine N-halamines to give magnetic/antibacterial bi-functional agents with core-shell structure. Since the presence of Fe3O4 NPs in core, the products offer super-paramagnetic behavior, which made them separable magnetically after the antibacterial behavior. Their sterilizing effect on bacterial strain was evaluated using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as model bacteria via the plate counting technique, zone of inhibition study, and time kill assay. Antibacterial mechanism study illustrated that the products integrate both the contact mechanism and the release mechanism for attacking bacteria. The significant effect of oxidative chlorine content and concentration of the products on antibiotic action were confirmed. Thanks to the magnetic property, the potential recyclability of the products was achieved. Most significantly, the products retain effective antibacterial action even after five cycles. These findings revealed that the products Fe3O4@SiO2/CTMP NPs have promising applications in the antibacterial fields.


Assuntos
Aminas/química , Antibacterianos/farmacologia , Nanopartículas de Magnetita/química , Escherichia coli/efeitos dos fármacos , Nanopartículas de Magnetita/ultraestrutura , Testes de Sensibilidade Microbiana , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 7(31): 17516-26, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26191972

RESUMO

Preventing bacterial infections is a main focus of medical care. Antibacterial agents with broad and excellent disinfection capability against pathogenic bacteria are in fact urgently required. Herein, a novel strategy for the development of N-halamine polymers from spheres to fibers using a combined copolymerization-electrospinning-chlorination technique was reported, allowing fight against bacterial pathogen. Optimizing the process conditions, e.g., comonomer molar ratio, concentration of electrospinning solution, chlorination order, and chlorination period, resulted in the formation of N-halamine fibers with controllable morphology. N-Halamine polymers were tested against two common bacterial pathogens, Escherichia coli and Staphylococcus aureus, and were found to be extremely potent against both bacteria, suggesting that they possess powerful sterilizing properties. Remarkably, compared with those with sphere morphology, N-halamine fibers show unexpected enhancement toward both pathogens possibly because of their shape (fiber morphology), surface state (rough surfaces), and surface charge (positive zeta potentials). It is believed that this approach has great potential to be utilized in various fields where antifouling and antibacterial properties are highly required.


Assuntos
Aminas/química , Antibacterianos/química , Polímeros/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Halogenação , Microscopia Eletrônica de Varredura , Polímeros/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
9.
J Colloid Interface Sci ; 444: 1-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25585280

RESUMO

Novel amine N-halamine copolymerized polystyrene (ANHCPS) nanostructures were controllably fabricated as potent antibiotics by using the surfactant-free emulsion copolymerization for killing pathogenic bacteria. The morphology and size of the ANHCPS were well tailored by tuning reaction conditions such as monomer molar ratio, temperature, and copolymerization time. Effect of chlorination aging time on the oxidative chlorine content in the ANHCPS was established, and the oxidative chlorine content was determined by the modified iodometric/thiosulfate technique. Antibacterial behavior of the ANHCPS on bacterial strain was evaluated using Staphylococcus aureus and Escherichia coli as model pathogenic bacteria via the plate counting technique, inhibition zone study, and time-kill assay. Antimicrobial results illustrated that the ANHCPS possessed superior antibacterial capability of killing pathogenic bacteria. The destruction induced by the ANHCPS on bacterial surface structure was proven by using SEM technique. The effect of the oxidative chlorine content and morphology/size on the antimicrobial capability was constructed as well. This study provides us a novel approach for controllably synthesizing amine N-halamine polymers, and making them the potent candidates for killing bacteria or even the control of microorganism contamination.


Assuntos
Aminas/química , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Poliestirenos/química , Staphylococcus aureus/efeitos dos fármacos , Aminas/síntese química , Aminas/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Polimerização , Poliestirenos/síntese química , Poliestirenos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico
10.
Colloids Surf B Biointerfaces ; 126: 106-14, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25543988

RESUMO

Novel potent antibiotics, amine N-halamine-labeled silica nanoparticles (ANHLS NPs) based on 2,2,6,6-tetramethyl-4-piperidinol (TMP), were skillfully synthesized via the encapsulation of silica nanoparticles with amine N-halamine polymer for effective killing pathogenic bacteria. The particle size and coating thickness of amine N-halamine of ANHLS NPs were well controlled by tuning size of silica NPs and polymer encapsulation period, respectively. Effect of chlorination time on the oxidative chlorine content in ANHLS NPs was well elucidated by the aid of the modified iodometric/thiosulfate technique. Antimicrobial action of the ANHLS NPs on bacterial strain was evaluated using Staphylococcus aureus and Escherichia coli as model pathogenic bacteria. Bactericidal assessment showed that the ANHLS NPs exerted powerful bactericidal capability toward both two model bacteria. Time-kill assay demonstrated the significance of the oxidative chlorine content and contact time on antibacterial behavior. Size effect experiment displayed the decisive role of the size in controlling the biocidal activity. Plausible antibacterial mechanism of the ANHLS NPs against pathogenic bacteria was also discussed. Such a systematic investigation of the ANHLS NPs provides us a novel idea of making them the promising candidates for deactivating bacteria or even disease control.


Assuntos
Aminas/farmacologia , Antibacterianos/farmacologia , Nanopartículas/química , Piperidinas/farmacologia , Dióxido de Silício/farmacologia , Aminas/síntese química , Aminas/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Piperidinas/síntese química , Piperidinas/química , Dióxido de Silício/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Colloid Polym Sci ; 291: 2359-2364, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058247

RESUMO

A novel route was introduced to synthesize dense polyacrylamide (PAM) onto the glass slide surface. To investigate the surface chemistry of the PAM on the glass slides, X-ray photoelectron spectroscopy (XPS) was utilized to obtain detailed chemical state information on the PAM layer constituents. The XPS peak data were consistent with the presented model of the PAM on the glass slide surface. Scanning electron microscopy and atomic force microscope data indicated the presence of PAM on the glass slides, which consist of nodules. The results showed that PAM was successfully immobilized onto glass slides with a two-tier structure under aqueous condition and a monolayer structure under anhydrous condition. Compared with those under aqueous condition, the controllability of the molecular layer on glass slides and the reproducibility under anhydrous condition were much better, which makes anhydrous condition an advisable condition for the study of the reaction mechanisms of glass slides modified by PAM.

12.
Int J Mol Sci ; 14(4): 7391-404, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23549271

RESUMO

Novel magnetic-antimicrobial-fluorescent multifunctional hybrid microspheres with well-defined nanostructure were synthesized by the aid of a poly(glycidyl methacrylate) (PGMA) template. The hybrid microspheres were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and digital fluorescence microscope. The as-synthesized microspheres PGMA, amino-modified PGMA (NH2-PGMA) and magnetic PGMA (M-PGMA) have a spherical shape with a smooth surface and fine monodispersity. M-PGMA microspheres are super-paramagnetic, and their saturated magnetic field is 4.608 emu·g-1, which made M-PGMA efficiently separable from aqueous solution by an external magnetic field. After poly(haxemethylene guanidine hydrochloride) (PHGH) functionalization, the resultant microspheres exhibit excellent antibacterial performance against both Gram-positive and Gram-negative bacteria. The fluorescence feature originating from the quantum dot CdTe endowed the hybrid microspheres with biological functions, such as targeted localization and biological monitoring functions. Combination of magnetism, antibiosis and fluorescence into one single hybrid microsphere opens up the possibility of the extensive study of multifunctional materials and widens the potential applications.


Assuntos
Antibacterianos , Corantes Fluorescentes , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Magnetismo , Microesferas , Antibacterianos/química , Antibacterianos/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Propriedades de Superfície
13.
ACS Appl Mater Interfaces ; 3(11): 4228-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22008460

RESUMO

Magnetic/antibacterial bifunctional nanoparticles were fabricated through the immobilization of antibacterial N-halamine on silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) (PSA) nanoparticles. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The N-halamine was developed from the precursor 5,5-dimethylhydantoin (DMH) by chlorination treatment, and experimental results showed that the loading amount of DMH on the silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) nanoparticles was adjustable. The as-synthesized nanoparticles exhibited superparamagnetic behavior and had a saturation magnetization of 18.93 emu g(-1). Antibacterial tests showed that the resultant nanoparticles displayed enhanced antibacterial activity against both Gram-positive and Gram-negative bacteria compared with their bulk counterparts.


Assuntos
Antibacterianos/química , Nanopartículas de Magnetita/química , Bactérias/efeitos dos fármacos , Hidantoínas/química , Hidantoínas/farmacologia , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
J Colloid Interface Sci ; 364(2): 333-40, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925670

RESUMO

Magnetic N-halamine nanocomposites were synthesized through the encapsulation of the magnetic silica nanoparticles with antibacterial N-halamine polymer. The as-synthesized sample was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analysis (TGA). The fabricated magnetic N-halamine nanocomposites possessed enhanced antibacterial activity against both gram-positive and gram-negative bacteria compared with their bulk counterparts. The effect of chlorine content of the magnetic N-halamine nanocomposites on the antibacterial activity was investigated. The magnetic N-halamine nanocomposites also exhibited super-paramagnetic behavior and had a saturation magnetization of 4.728 emu g(-1) at room temperature, which made these nanocomposites separable magnetically after the antibacterial behavior. Performances derived from the synergism between magnetic core and antibacterial shell suggest that the magnetic N-halamine nanocomposites are qualified for antibacterial applications and separable by the aid of the external magnetic field.


Assuntos
Aminas/química , Antibacterianos/química , Magnetismo , Nanocompostos , Aminas/isolamento & purificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
15.
Nanotechnology ; 22(29): 295602, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21673388

RESUMO

N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.


Assuntos
Aminas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Nanopartículas/química , Polímeros/química , Dióxido de Silício/química , Halogenação/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrofotometria Infravermelho , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA