Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202319295, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335036

RESUMO

Achieving both high power conversion efficiency (PCE) and device stability is a major challenge for the practical development of organic solar cells (OSCs). Herein, three non-fully conjugated dimerized giant acceptors (named 2Y-sites, including wing-site-linked 2Y-wing, core-site-linked 2Y-core, and end-site-linked 2Y-end) are developed. They share the similar monomer precursors but have different alkyl-linked sites, offering the fine-tuned molecular absorption, packing, glass transition temperature, and carrier mobility. Among their binary active layers, D18/2Y-wing has better miscibility, leading to optimized morphology and more efficient charge transfer compared to D18/2Y-core and D18/2Y-end. Therefore, the D18/2Y-wing-based OSCs achieve a superior PCE of 17.73 %, attributed to enhanced photocurrent and fill factor. Furthermore, the D18/2Y-wing-based OSCs exhibit a balance of high PCE and improved stability, distinguishing them within the 2Y-sites. Building on the success of 2Y-wing in binary systems, we extend its application to ternary OSCs by pairing it with the near-infrared absorbing D18/BS3TSe-4F host. Thanks to the complementary absorption within 300-970 nm and further optimized morphology, ternary OSCs obtain a higher PCE of 19.13 %, setting a new efficiency benchmark for the dimer-derived OSCs. This approach of alkyl-linked site engineering for constructing dimerized giant acceptors presents a promising pathway to improve both PCE and stability of OSCs.

2.
RSC Adv ; 13(41): 29035-29042, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37799307

RESUMO

The design and synthesis of polymer donors with a low-lying highest occupied molecular orbital (HOMO) level are crucial for increasing open-circuit voltages (VOC) and achieving high-performance non-fullerene polymer solar cells. Here, we developed two copolymers using non-fluorinated or fluorinated thienyl-conjugated benzodithiophenes as electron donor units, and difluoro-quinoxaline with a naphthalimide substituent (DNB) as the electron acceptor unit. These copolymers, namely PDNB and PDNB-2F, exhibited deep HOMO levels owing to the strong electron-withdrawing ability of the naphthalimide substituent. Density-functional theory calculations demonstrated that the skeletons of the two copolymers featured good coplanarity. Owing to the fluorination, PDNB-2F displayed an increased absorption coefficient and deeper HOMO level than PDNB. Moreover, the blended film based on PDNB-2F:Y6 demonstrated enhanced carrier mobility, decreased bimolecular recombination as well as favorable phase-separation regions. Consequently, the PDNB-2F:Y6-based device yielded a superior power conversion efficiency (PCE) of 12.18%, whereas the device based on PDNB:Y6 showed a comparatively lower PCE of 8.83%. These results indicate that difluoro-quinoxaline with a naphthalimide substituent is a prospective electron-deficient building block to develop donor polymers with low-lying HOMO levels to achieve efficient non-fullerene polymer solar cells.

3.
Small ; 19(52): e2304368, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649173

RESUMO

Ternary polymer solar cells(PSCs) have been identified as an effective approach to improving power conversion efficiency (PCE) of binary PSCs. However, most of the third component, especially Y-series non-fullerene acceptors, is a fused ring acceptor which often requires a rather tedious synthesis and the use of hazardous organostannane reagents. In this work, two nonfused ring acceptors IOEH-4F and IOEH-N2F are synthesized by a green synthetic route and incorporated into PM6:Y6 blend. Encouragingly, the IOEH-4F and IOEH-N2F-based ternary PSCs exhibited more efficient charge transfer, exciton separation, and lower energy loss than PM6:Y6-based PSCs. And the IOEH-4F and IOEH-N2F-based ternary PSCs achieved an impressive PCE of 17.80% and 18.13%, respectively, which are higher than that of PM6:Y6 based PSCs (16.18%). Notably, these PCE values are also the highest PCEs for ternary PSCs including non-fused ring acceptors. Importantly, even when the IOEH-N2F:Y6 ratios increased from 0.05:1.2 to 0.50:1.2, the PCE of IOEH-N2F-based ternary PSCs (16.70%) are still higher than that of PM6:Y6 based PSCs, indicating the great potential for cost saving. It is believed that the findings will help the design of better nonfused ring acceptors and the optimization of corresponding ternary PSCs with cost-saving advantage.

4.
Ann Transl Med ; 10(22): 1237, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36544691

RESUMO

Background: The anatomy of the right posterior portal vein (RPPV) plays an important role in planning hepatic resection, living transplantation and interventional radiological procedures, yet the incidence of variations of RPPV without a common trunk in Chinese persons is still unclear. Therefore, we conducted this study and discussed its clinical implications. Methods: A retrospective analysis of multidetector computed tomography (MDCT) scans was performed in 1,933 patients with various abdominal pathologies between September 28, 2018 through May 23, 2019. After excluding 930 patients, a total of 1,003 patients were included in this study. Variations of the RPPV without a common trunk were classified according to classification standards. Results: A total of 1,003 patients were included. RPPV without a common trunk was found in 216 (21.54%, 216/1,003) patients. Among them, we identified three variations of the origin from the right portal vein (RPV): first separate origin of P6, P7, or simultaneous separate origin of P6 and P7, and the incidences of these three variations were 1.50% (15/1,003), 6.58% (66/1,003) and 13.46% (135/1,003), respectively. Among 1,003 patients included in this study, 787 patients (78.46%, 787/1,003) showed that RPPV normally divided into P6 and P7 branches. Conclusions: Variations of the RPPV without a common trunk were not rare in Chinese population. Knowledge of this anatomic variation of the RPPV is extremely important for hepatic and transplant surgeons and interventional radiologists.

5.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142313

RESUMO

A series of symmetrical truxene-centered and 3-ethylrhodanine end-capped electron acceptors with high absorption coefficient, namely Tr(Hex)6-3RD, Tr(Dec)6-3RD, and Tr(Hex)6-6RD, were prepared and constructed for non-fullerene solar cells. To satisfy solution-processability, multiple energy levels, and suitable morphology, these three acceptors were comparatively studied through alkyl chain (hexyl/decyl) and branched-arm engineering (three/six branched arms). The six-bladed propeller acceptor of Tr(Hex)6-6RD recorded the power conversion efficiency (PCE) of 1.1% blending with PTB7-Th without additional additives and post-processing. This work highly broadens the potential applications of star-shaped truxene building blocks in the fields of organic electronics.

6.
RSC Adv ; 12(28): 17898-17904, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35765348

RESUMO

All-polymer solar cells (all-PSCs) with mechanical and thermal stability have potential for applications in flexible devices. Polymer acceptors based on naphthalene diimide (NDI) have been widely studied because of their strong electron affinity, high electron mobility, and high mechanical reliability. However, controlling the film morphology of the polymer-polymer blends of NDI-based all-PSCs is difficult. Consequently, all-PSCs based on NDI building blocks exhibit a low fill factor (FF) and a lower power-conversion efficiency (PCE) than state-of-the-art polymer solar cells. In this work, we added a small amount of dicyanodistyrylbenzene (DCB) unit to the NDI-based polymer acceptor N2200 through random copolymerization and synthesized a series of NDI-based terpolymer acceptors PNDIx, where x is the molar concentration of DCB units relative to NDI units. PNDI5 and PNDI10, corresponding to 5% and 10% molar concentrations of DCB, respectively, showed lower crystallization and good miscibility with PBDB-T, a widely used electron-donating copolymer, than the terpolymer based on DCB-free N2200. Moreover, compared to the PBDB-T:N2200 device, the PNDI5-based device exhibited a much higher PCE (8.01%), and an enhanced FF of 0.75 in all-PSCs. These results indicate that ternary random copolymerization is a convenient and effective strategy for optimizing the film morphology of NDI-based polymers, and that the resulting terpolymer acceptor is a promising n-type acceptor for constructing high-performance all-PSCs.

7.
ACS Appl Mater Interfaces ; 14(22): 25516-25523, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638180

RESUMO

The development of intercalation anodes with high capacity is key to promote the progress of "rocking-chair" Zn-ion batteries (ZIBs). Here, layered BiOI is considered as a promising electrode in ZIBs due to its large interlayer distance (0.976 nm) and low Zn2+ diffusion barrier (0.57 eV) obtained by density functional theory, and a free-standing BiOI nanopaper is designed. The process and mechanism of Zn(H2O)n2+ insertion in BiOI are proved by ex situ X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The suitable potential (0.6 V vs Zn/Zn2+), high reversible capacity (253 mAh g-1), good rate performance (171 mAh g-1 at 10 A g-1), long cyclic life (113 mAh g-1 after 5000 cycles at 5 A g-1), and dendrite-free operation of BiOI nanopaper prove its potential as a superior anode. When it is coupled with Mn3O4 cathode, the quasi-solid-state battery exhibits a high initial capacity of 149 mAh g-1 (for anode) and a good capacity retention of 70 mAh g-1 after 400 cycles. The self-assembled flexible battery also shows stable charge-discharge during the cyclic test. This work shows the feasibility of BiOX anode for dendrite-free ZIBs.

8.
J Colloid Interface Sci ; 608(Pt 2): 1377-1383, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742059

RESUMO

The obtainment of low-cost, easily prepared and high-powered LiMn2O4 is the key to achieve its wide application in various electronic devices. In this work, a mild and easily scaled molten salt method (KCl@LiCl) is utilized to convert commercial MnO2 to the high-performance LiMn2O4. At the same reaction temperature, the molten salt method leads to the formation of K+-doped LiMn2O4 with higher crystallinity compared to the conventional solid state method, which contributes to the improved inner charge transfer. The Li3PO4 protective layer is coated on the surface of K+-doped LiMn2O4 to elevate the interfacial stability and the Li+ transfer on interface. Thus, the optimized electrode shows a higher specific discharge capacity (103/60 mAh g-1 at 0.02/2 A g-1) and a longer cyclic life (80 mAh g-1 after 500 cycles at 0.5 A g-1) compared to those of LiMn2O4 by solid state method (49/2 mAh g-1 at 0.02/2 A g-1 and 20 mAh g-1 after 500 cycles at 0.5 A g-1).

9.
Tomography ; 7(4): 877-892, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34941646

RESUMO

Achieving high feature reproducibility while preserving biological information is one of the main challenges for the generalizability of current radiomics studies. Non-clinical imaging variables, such as reconstruction kernels, have shown to significantly impact radiomics features. In this study, we retrain an open-source convolutional neural network (CNN) to harmonize computerized tomography (CT) images with various reconstruction kernels to improve feature reproducibility and radiomic model performance using epidermal growth factor receptor (EGFR) mutation prediction in lung cancer as a paradigm. In the training phase, the CNN was retrained and tested on 32 lung cancer patients' CT images between two different groups of reconstruction kernels (smooth and sharp). In the validation phase, the retrained CNN was validated on an external cohort of 223 lung cancer patients' CT images acquired using different CT scanners and kernels. The results showed that the retrained CNN could be successfully applied to external datasets with different CT scanner parameters, and harmonization of reconstruction kernels from sharp to smooth could significantly improve the performance of radiomics model in predicting EGFR mutation status in lung cancer. In conclusion, the CNN based method showed great potential in improving feature reproducibility and generalizability by harmonizing medical images with heterogeneous reconstruction kernels.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Redes Neurais de Computação , Reprodutibilidade dos Testes , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos
10.
RSC Adv ; 11(63): 39625-39635, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494134

RESUMO

Three novel A-D-A type small-molecule donor materials, namely AAN-DPP2, AAN(T-DPP)2 and AANT(T-DPP)2, with anthanthrene (AAN) as the electron-donating core, diketopyrrolopyrrole (DPP) as the electron-accepting moiety, and thiophene as π-bridge units, have been designed and synthesized for application in bulk-heterojunction (BHJ) organic solar cells (OSCs). Compared to AAN-DPP2, devices based on AAN(T-DPP)2 and AANT(T-DPP)2 show better photovoltaic performance due to broader absorption and better planarity of the molecular backbone. A maximum power conversion efficiency (PCE) of 2.33% with a short-circuit current density (J sc) of 6.82 mA cm-2 and a fill factor (FF) of 39.80 was obtained in the AAN(T-DPP)2/PC71BM-based solar cells. This is resulting from the suitable thickness of the active layer, improving the ability of catching light and decreasing the twist angle of the backbone by inserting a thiophene spacer. The results indicate that strategic substitution of π-bridges and side-chains in A-D-A type SMs is an efficient strategy to improve photovoltaic performance.

11.
RSC Adv ; 11(35): 21397-21404, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478821

RESUMO

A wide-bandgap polymer donor with improved efficiency plays an important role in improving the photovoltaic performance of polymer solar cells (PSCs). In this study, two novel wide-bandgap polymer donors, PBDT and PBDT-S, were designed and synthesized based on a dicyanodivinyl indacenodithiophene (IDT-CN) moiety, in which benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks and IDT-CN are used as electron-sufficient and -deficient units, respectively. In our study, the PBDT and PBDT-S polymer donors exhibited similar frontier-molecular-orbital energy levels and optical properties, and both copolymers showed good miscibility with the widely used narrow-bandgap small molecular acceptor Y6. Non-fullerene polymer solar cells (NF-PSCs) based on PBDT:Y6 exhibited an impressive power conversion efficiency of 10.04% with an open circuit voltage of 0.88 V, a short-circuit current density of 22.16 mA cm-2 and a fill factor of 51.31%, where the NF-PSCs based on PBDT-S:Y6 exhibited a moderate power conversion efficiency of 6.90%. The enhanced photovoltaic performance, realized by virtue of the improved short-circuit current density, can be attributed to the slightly enhanced electron mobility, higher exciton dissociation rates, more efficient charge collection and better nanoscale phase separation of the PBDT-based device. The results of this work indicate that the IDT-CN unit is a promising building block for constructing donor polymers for high-performance organic photovoltaic cells.

12.
Chemistry ; 25(2): 564-572, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30285301

RESUMO

The packing mode of small-molecular semiconductors in thin films is an important factor that controls the performance of their optoelectronic devices. Designing and changing the packing mode by molecular engineering is challenging. Three structurally related diketopyrrolopyrrole (DPP)-based compounds were synthesized to study the effect of replacing C-C bonds by isoelectronic dipolar B←N bonds. By replacing one of the bridging C-C bonds on the peripheral fluorene units of the DPP molecules by a coordinative B←N bond and changing the B←N bond orientation, the optical absorption, fluorescence, and excited-state lifetime of the compounds can be tuned. The substitution alters the preferential aggregation of the molecules in the solid state from H-type (for C-C) to J-type (for B←N). Introducing B←N bonds thus provides a subtle way of controlling the packing mode. The photovoltaic properties of the compounds were evaluated in bulk heterojunctions with a fullerene acceptor and showed moderate performance as a consequence of suboptimal morphologies, bimolecular recombination, and triplet-state formation.

13.
Sci Rep ; 8(1): 17913, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559455

RESUMO

We evaluated whether the optimal selection of CT reconstruction settings enables the construction of a radiomics model to predict epidermal growth factor receptor (EGFR) mutation status in primary lung adenocarcinoma (LAC) using standard of care CT images. Fifty-one patients (EGFR:wildtype = 23:28) with LACs of clinical stage I/II/IIIA were included in the analysis. The LACs were segmented in four conditions, two slice thicknesses (Thin: 1 mm; Thick: 5 mm) and two convolution kernels (Sharp: B70f/B70s; Smooth: B30f/B31f/B31s), which constituted four groups: (1) Thin-Sharp, (2) Thin-Smooth, (3) Thick-Sharp, and (4) Thick-Smooth. Machine learning algorithms selected and combined 1,695 quantitative image features to build prediction models. The performance of prediction models was assessed by calculating the area under the curve (AUC). The best prediction model yielded AUC (95%CI) = 0.83 (0.68, 0.92) using the Thin-Smooth reconstruction setting. The AUC of models using thick slices was significantly lower than that of thin slices (P < 10-3), whereas the impact of reconstruction kernel was not significant. Our study showed that the optimal prediction of EGFR mutational status in early stage LACs was achieved by using thin CT-scan slices, independently of convolution kernels. Results from the prediction model suggest that tumor heterogeneity is associated with EGFR mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Algoritmos , Área Sob a Curva , Receptores ErbB/genética , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estadiamento de Neoplasias/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
14.
ACS Appl Mater Interfaces ; 10(30): 25594-25603, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992809

RESUMO

Efficiency and stability of polymer solar cells (PSCs) are the two most significant decisive factors for the purpose of actual applications. Here, highly efficient and stable ternary PSCs were fabricated by incorporating two well-compatible polymer donors (poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2- b;4,5- b0]dithiophene-2,6-diyl- alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene-)-2-carboxylate-2-6-diyl] and poly[[9-(1-octylnonyl)-9 H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) with one narrow band gap nonfullerene acceptor (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene)). It is found that Förster resonance energy transfer acts as an efficient pathway to further strengthen photon harvesting in this ternary system, which results in a significant improvement in current density ( JSC) without sacrificing the strong absorption of binary blends in the near-infrared region. Meanwhile, both of the inverted and conventional ternary PSCs exhibit better stability compared with the related binary PSCs in air condition because of the interlocked morphology in ternary films. The optimized ternary PSCs exhibit an outstanding power conversion efficiency (PCE) of 9.53% resulting from the synchronous improvements in JSC and fill factor. Moreover, this ternary strategy can be further confirmed by the use of an ultranarrow-band gap nonfullerene acceptor IEICO-4F, and the champion PCE of ternary PSCs reaches to 12.15%.

15.
ACS Appl Mater Interfaces ; 8(30): 19665-71, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27403850

RESUMO

Unsubstituted benzo[1,2-b:4,5-b']dithiophene (BDT) was used to construct a high-performance conjugated polymer with 5,6-difluoro-4,7-bis[4-(2-octyldodecyl)thiophene-2-yl]benzo[c][1,2,5] thiadiazole (DTFFBT), named PBDT-DTFFBT. The polymer shows the low-lying highest occupied molecular orbital (HOMO) energy level (-5.40 eV) and a broad absorption spectra with strong vibronic absorption peak. Pure polymer films exhibit good crystallinity and edge-on orientation, partially attributed to the BDT units without any side chains, and as a result, the corresponding thin-film transistor showed excellent hole mobility over 1 cm(2) V(-1) s(-1). Interestingly, a well-distributed nanofibrillar polymer aggregation with face-on orientation was obviously formed when blending with PC71BM, which was in favor of the charge transportation. Consequently, the bulk heterojunction polymer solar cells based on the blends showed high power conversion efficiency of 9.29% with large short-current density (14.56 mA cm(-2)) and high fill factor (0.751) without any process additives or thermal annealing.

16.
Phys Chem Chem Phys ; 18(3): 1507-15, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26667581

RESUMO

A series of novel A1-A-A1 type small molecules (SMs) of BDPT-2BT, BDPT-2FBT and BDPT-2DPP were designed and synthesized, in which benzodi(pyridothiophene) (BDPT) was used as a novel weak central acceptor (A) unit, and benzothiadiazole (BT), fluorinated benzothiadiazole (FBT) and diketopyrrolopyrrole (DPP) were used as terminal acceptor (A1) units, respectively. The pentacyclic BDPT aromatic unit can form big conjugated and planar SMs with the A1 unit, resulting in enhanced π-π stacking and crystallinity. The effect of the A1 unit on the optical, electrochemical and photovoltaic properties of three SMs was observed. The broader absorption spectrum, lower HOMO energy level, higher photo-response efficiency and better photovoltaic properties were exhibited for BDPT-2DPP. A maximum PCE of 3.97% with a Voc of 0.84 V, a Jsc of 9.0 mA cm(-2) and a FF of 52.37% was obtained in the BDPT-2DPP/PC71BM-based solar cells, which is 1.8 and 1.5 times the values of the BDPT-2BT and BDPT-2FBT-based cells, respectively.

17.
Chemistry ; 22(5): 1618-21, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26689871

RESUMO

Blue- and green-emitting cyclometalated liquid-crystalline iridium complexes are realized by using a modular strategy based on strongly mesogenic groups attached to an acetylacetonate ancillary ligand. The cyclometalated ligand dictates the photophysical properties of the materials, which are identical to those of the parent complexes. High hole mobilities, up to 0.004 cm(2) V(-1) s(-1), were achieved after thermal annealing, while amorphous materials show hole mobilities of only approximately 10(-7) -10(-6) cm(2) V(-1) s(-1), similar to simple iridium complexes. The design strategy allows the facile preparation of phosphorescent liquid-crystalline complexes with fine-tuned photophysical properties.

18.
ACS Appl Mater Interfaces ; 7(41): 23190-6, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26436528

RESUMO

The layer-by-layer process method, which had been used to fabricate a bilayer or bulk heterojunction organic solar cell, was developed to fabricate highly efficient ternary blend solar cells in which small molecules and polymers act as two donors. The active layer could be formed by incorporating the small molecules into the polymer based active layer via a layer-by-layer method: the small molecules were first coated on the surface of poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) ( PEDOT: PSS), and then the mixed solution of polymer and fullerene derivative was spin-coated on top of a small molecule layer. In this method, the small molecules in crystalline state were effectively mixed in the active layer. Without further optimization of the morphology of the ternary blend, a high power conversion efficiency (PCE) of 8.76% was obtained with large short-circuit current density (Jsc) (17.24 mA cm(-2)) and fill factor (FF) (0.696). The high PCE resulted from not only enhanced light harvesting but also more balanced charge transport by incorporating small molecules.

19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 40(8): 941-4, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26333506

RESUMO

OBJECTIVE: To determine the CT imaging features for retroperitoneal solitary fibrous tumor (SFT).
 METHODS: The imaging features of CT for 2 SFT cases, confirmed by pathological examination, were retrospectively analyzed and compared with pathological results.
 RESULTS: The results of CT showed that retroperitoneal SFTs were large, well-defined and consisted of solid components with different density (equal or low). In the scan of contrast enhancement, tumors were strongly enhanced, and the multiple vascular shadows were seen in the tumor at arterial phase. There was progressive enhancement from the arterial to venous phase, and capsule of tumor was displayed. Histologically, the tumors were composed of spindle cells within a background of collagen stroma, and showed a wide range of growth patterns, alternating hypercellular (tumor cell-rich) and hypocellular (collagen-rich) areas. The diagnosis was confirmed by positive immunohistochemical staining for CD34 and bcl-2.
 CONCLUSION: The retroperitoneal SFT possesses a definite characteristic in CT imaging features, and the diagnosis can be confirmed by histopathology and immunohistochemistry.


Assuntos
Tumores Fibrosos Solitários/diagnóstico , Tomografia Computadorizada por Raios X , Humanos , Hiperplasia , Imuno-Histoquímica , Espaço Retroperitoneal/patologia , Estudos Retrospectivos
20.
ACS Appl Mater Interfaces ; 7(33): 18292-9, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26234540

RESUMO

Two isomeric A-Ar-A-type small molecules of DPP2An(9,10) and DPP2An(2,6), were synthesized with two acceptor arms of diketopyrropyrroles (DPP) and a planar aryl hydrocarbon core of the different substituted anthracene (An), respectively. Their thermal stability, crystallinity, optoelectronic, and photovoltaic performances were investigated. Significantly red-shifted absorption profile and higher HOMO level were observed for the DPP2An(2,6) with 2,6-substituted anthracene relative to the DPP2An(9,10) with 9,10-substituted anthracene, as the former exhibited better planarity and a larger conjugate system. As a result, the solution-processing solar cells based on DPP2An(2,6) and PC71BM (w/w,1:1) displayed remarkably increased power conversion efficiency of 5.44% and short-circuit current density (Jsc) of 11.90 mA/cm(2) under 1% 1,8-diiodooctane additive. The PCE and Jsc values were 3.7 and 2.9 times those of the optimized DPP2An(9,10)-based cells, respectively. This work demonstrates that changing the linkage position of the anthracene core in the A-Ar-A-type SMs can strongly improve the photovoltaic properties in organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA