Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947634

RESUMO

Over the past two decades, a growing body of evidence observations have shown group two innate lymphoid cells (ILC2) to be critical drivers of Type 2 (T2) inflammatory responses associated with allergic inflammatory conditions such as asthma. ILC2 releases copious amounts of pro-inflammatory T2 cytokines-interleukin (IL)-4, IL-5, IL-9, and IL-13. This review provides a comprehensive overview of the newly discovered regulatory subtype of ILC2 described in murine and human mucosal tissue and blood. These KLRG1+ILC2 have the capacity to produce the anti-inflammatory cytokine IL-10. Papers compiled in this review were based on queries of PubMed and Google Scholar for articles published from 2000 to 2023 using keywords "IL-10" and "ILC2". Studies with topical relevance to IL-10 production by ILC2 were included. ILC2 responds to microenvironmental cues, including retinoic acid (RA), IL-2, IL-4, IL-10, and IL-33, as well as neuropeptide mediators such as neuromedin-U (NMU), prompting a shift towards IL-10 and away from T2 cytokine production. In contrast, TGF-ß attenuates IL-10 production by ILC2. Immune regulation provided by IL-10+ILC2s holds potential significance for the management of T2 inflammatory conditions. The observation of context-specific cues that alter the phenotype of ILC warrants examining characteristics of ILC subsets to determine the extent of plasticity or whether the current classification of ILCs requires refinement.


Assuntos
Asma , Interleucina-10 , Humanos , Animais , Camundongos , Imunidade Inata , Linfócitos , Citocinas
2.
Reprod Biol Endocrinol ; 21(1): 75, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612696

RESUMO

OBJECTIVE: To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer. METHODS: An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion. RESULTS: The search yielded 564 studies, of which 75 met the inclusion criteria. Four major types of liposomes were identified: cationic, neutral, polymer-coated, and ligand-targeted liposomes. The liposome with the most evidence involved cationic liposomes which are characterized by their positively charged phospholipids (n = 37, 49.3%). Similarly, those with neutrally charged phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, were highly researched as well (n = 25, 33.3%). Eight areas of gene therapy research were identified, evaluating either target proteins/transcripts or molecular pathways: microRNAs, ephrin type-A receptor 2 (EphA2), interleukins, mitogen-activated protein kinase (MAPK), human-telomerase reverse transcriptase/E1A (hTERT/EA1), suicide gene, p53, and multidrug resistance mutation 1 (MDR1). CONCLUSION: Liposomal delivery of gene therapy for ovarian cancer shows promise in many in vivo studies. Emerging polymer-coated and ligand-targeted liposomes have been gaining interest as they have been shown to have more stability and specificity. We found that gene therapy involving microRNAs was the most frequently studied. Overall, liposomal genetic therapy has been shown to reduce tumor size and weight and improve survivability. More research involving the delivery and targets of gene therapy for ovarian cancer may be a promising avenue to improve patient outcomes.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Lipossomos , Ligantes , Fosfolipídeos , Terapia Genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA