Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(3): 168433, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38182104

RESUMO

The ligand-regulated PAS domains are one of the most diverse signal-integrating domains found in proteins from prokaryotes to humans. By biochemically connecting cellular processes with their environment, PAS domains facilitate an appropriate cellular response. PAS domain-containing Kinase (PASK) is an evolutionarily conserved protein kinase that plays important signaling roles in mammalian stem cells to establish stem cell fate. We have shown that the nuclear translocation of PASK is stimulated by differentiation signaling cues in muscle stem cells. However, the mechanistic basis of the regulation of PASK nucleo-cytoplasmic translocation remains unknown. Here, we show that the PAS-A domain of PASK contains a putative monopartite nuclear localization sequence (NLS) motif. This NLS is inhibited in cells through intramolecular association with a short linear motif, termed the PAS Interacting Motif (PIM), found upstream of the kinase domain. This interaction serves to retain PASK in the cytosol in the absence of signaling cues. Consistent with that, we show that metabolic inputs induce PASK nuclear import, likely by disrupting this association. We suggest that a route for such linkage may occur through the PAS-A ligand binding cavity. We show that PIM recruitment and artificial ligand binding to the PAS-A domain occur at neighboring locations that could facilitate metabolic control of the PAS-PIM interaction. Thus, the intramolecular interaction in PASK integrates metabolic signaling cues for nuclear translocation and could be targeted to control the balance between self-renewal and differentiation in stem cells.


Assuntos
Sinais de Localização Nuclear , Proteínas Serina-Treonina Quinases , Animais , Humanos , Transporte Ativo do Núcleo Celular , Diferenciação Celular , Ligantes , Fosforilação , Transdução de Sinais , Sinais de Localização Nuclear/química , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química
2.
Cell Stem Cell ; 30(12): 1658-1673.e10, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065069

RESUMO

Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Hematopoéticas , Inflamação , Metilação de RNA , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Metilação de RNA/genética
3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37732199

RESUMO

The ligand-regulated PAS domains are one of the most diverse signal-integrating domains found in proteins from prokaryotes to humans. By biochemically connecting cellular processes with their environment, PAS domains facilitate an appropriate cellular response. PAS domain-containing Kinase (PASK) is an evolutionarily conserved protein kinase that plays important signaling roles in mammalian stem cells to establish stem cell fate. We have shown that the nuclear translocation of PASK is stimulated by differentiation signaling cues in muscle stem cells. However, the mechanistic basis of the regulation of PASK nucleo-cytoplasmic translocation remains unknown. Here, we show that the PAS-A domain of PASK contains a putative monopartite nuclear localization sequence (NLS) motif. This NLS is inhibited in cells via intramolecular association with a short linear motif, termed the PAS Interacting Motif (PIM), found upstream of the kinase domain. The interaction between the PAS-A domain and PIM is evolutionarily conserved and serves to retain PASK in the cytosol in the absence of signaling cues. Consistent with that, we show that metabolic inputs induce PASK nuclear import, likely by disrupting the PAS-A: PIM association. We suggest that a route for such linkage may occur through the PAS-A ligand binding cavity. We show that PIM recruitment and artificial ligand binding to the PAS-A domain occur at neighboring locations that could facilitate metabolic control of the PAS-PIM interaction. Thus, the PAS-A domain of PASK integrates metabolic signaling cues for nuclear translocation and could be targeted to control the balance between self-renewal and differentiation in stem cells.

4.
Elife ; 122023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052079

RESUMO

Quiescent stem cells are activated in response to a mechanical or chemical injury to their tissue niche. Activated cells rapidly generate a heterogeneous progenitor population that regenerates the damaged tissues. While the transcriptional cadence that generates heterogeneity is known, the metabolic pathways influencing the transcriptional machinery to establish a heterogeneous progenitor population remains unclear. Here, we describe a novel pathway downstream of mitochondrial glutamine metabolism that confers stem cell heterogeneity and establishes differentiation competence by countering post-mitotic self-renewal machinery. We discovered that mitochondrial glutamine metabolism induces CBP/EP300-dependent acetylation of stem cell-specific kinase, PAS domain-containing kinase (PASK), resulting in its release from cytoplasmic granules and subsequent nuclear migration. In the nucleus, PASK catalytically outcompetes mitotic WDR5-anaphase-promoting complex/cyclosome (APC/C) interaction resulting in the loss of post-mitotic Pax7 expression and exit from self-renewal. In concordance with these findings, genetic or pharmacological inhibition of PASK or glutamine metabolism upregulated Pax7 expression, reduced stem cell heterogeneity, and blocked myogenesis in vitro and muscle regeneration in mice. These results explain a mechanism whereby stem cells co-opt the proliferative functions of glutamine metabolism to generate transcriptional heterogeneity and establish differentiation competence by countering the mitotic self-renewal network via nuclear PASK.


Assuntos
Glutamina , Células-Tronco , Animais , Camundongos , Diferenciação Celular/fisiologia , Células Cultivadas , Metabolismo Energético , Células-Tronco/fisiologia
5.
Nat Commun ; 14(1): 2290, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085479

RESUMO

Tissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors. Mechanistically, we find that SYNCRIP loss results in a failure to maintain proteome homeostasis that is essential for HSC maintenance. SYNCRIP depletion results in increased protein synthesis, a dysregulated epichaperome, an accumulation of misfolded proteins and induces endoplasmic reticulum stress. Additionally, we find that SYNCRIP is required for translation of CDC42 RHO-GTPase, and loss of SYNCRIP results in defects in polarity, asymmetric segregation, and dilution of unfolded proteins. Forced expression of CDC42 recovers polarity and in vitro replating activities of HSCs. Taken together, we uncovered a post-transcriptional regulatory program that safeguards HSC self-renewal capacity and blood homeostasis.


Assuntos
Células-Tronco Hematopoéticas , Ribonucleoproteínas Nucleares Heterogêneas , Proteostase , Animais , Camundongos , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos Knockout , Proteostase/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Aliment Pharmacol Ther ; 56(2): 224-230, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35644931

RESUMO

BACKGROUND: Tradipitant, an NK1 receptor antagonist, improved symptoms in patients with gastroparesis. It is unclear whether these effects are mediated centrally (e.g., vomiting centre) or on gastric functions. As a class, NK1 antagonists may retard gastric emptying (GE) or increase fasting and postprandial gastric volumes (GV). AIM: To evaluate the effects of tradipitant relative to placebo on gastric motor functions, satiation, postprandial symptoms, and pharmacokinetics. METHODS: We conducted a randomised, double-blind, placebo-controlled, single-centre study of tradipitant 85 mg or matching placebo b.i.d. for 9 consecutive days in 24 healthy volunteers. During the last 2 days of treatment, participants underwent scintigraphic measurements of GE of 320 kcal egg meal, fasting and postprandial GV by SPECT, and satiation by nutrient drink ingested to maximum tolerated volume (MTV) and symptoms 30 min later. Treatments were compared by Wilcoxon rank sum test. The study had 80% power to detect group differences of 23.6% in GV and 29.2% in GE T1/2 . RESULTS: The two groups of healthy participants were well balanced based on demographic features, age, and BMI. There were nonsignificant positive correlations between blood levels of tradipitant and accommodation GV and GE at 4 h. There were no significant effects of tradipitant, 85 mg b.i.d. for 9 days compared to placebo on GE, GV, satiation, or symptoms 30 min after MTV. CONCLUSION: Tradipitant, 85 mg b.i.d., does not significantly affect gastric motor functions (GV or GE). Importantly, there was no retardation of GE by tradipitant, which is important in relation to its potential use in patients with gastroparesis. CLINIC TRIALS REGISTRY: ClinicalTrials.gov #NCT04849559.


Assuntos
Antieméticos , Gastroparesia , Método Duplo-Cego , Esvaziamento Gástrico , Gastroparesia/tratamento farmacológico , Voluntários Saudáveis , Humanos , Período Pós-Prandial , Saciação/fisiologia , Estômago/diagnóstico por imagem
7.
Blood Cancer Discov ; 2(3): 266-287, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34027418

RESUMO

We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.


Assuntos
Leucemia Mieloide Aguda , Sirtuínas , Apoptose , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/metabolismo , Mitocôndrias/genética , Fosforilação Oxidativa , Sirtuínas/genética
8.
Blood ; 134(26): 2388-2398, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31697804

RESUMO

The V617F mutation in the JH2 domain of Janus kinase 2 (JAK2) is an oncogenic driver in several myeloproliferative neoplasms (MPNs), including essential thrombocythemia, myelofibrosis, and polycythemia vera (PV). Other mutations in JAK2 have been identified in MPNs, most notably exon 12 mutations in PV. Here, we describe a novel recurrent mutation characterized by a common 4-amino-acid deletion and variable 1-amino-acid insertion (Leu583-Ala586DelInsSer/Gln/Pro) within the JH2 domain of JAK2. All 4 affected patients had eosinophilia, and both patients with Leu583-Ala586DelInsSer fulfilled diagnostic criteria of both PV and chronic eosinophilic leukemia (CEL). Computational and functional studies revealed that Leu583-Ala586DelInsSer (herein referred to as JAK2ex13InDel) deregulates JAK2 through a mechanism similar to JAK2V617F, activates signal transducer and activator of transcription 5 and extracellular signal-regulated kinase, and transforms parental Ba/F3 cells to growth factor independence. In contrast to JAK2V617F, JAK2ex13InDel does not require an exogenous homodimeric type 1 cytokine receptor to transform Ba/F3 cells and is capable of activating ß common chain family cytokine receptor (interleukin-3 receptor [IL-3R], IL-5R, and granulocyte-macrophage colony stimulating factor receptor) signaling in the absence of ligand, with the maximum effect observed for IL-5R, consistent with the clinical phenotype of eosinophilia. Recognizing this new PV/CEL-overlap MPN has significant clinical implications, as both PV and CEL patients are at high risk for thrombosis, and concomitant cytoreduction of red cells, neutrophils, and eosinophils may be required for prevention of thromboembolic events. Targeted next-generation sequencing for genes recurrently mutated in myeloid malignancies in patients with unexplained eosinophilia may reveal additional cases of Leu583-Ala586DelInsSer/Gln/Pro, allowing for complete characterization of this unique MPN.


Assuntos
Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Síndrome Hipereosinofílica/patologia , Mutação INDEL , Janus Quinase 2/genética , Leucemia/patologia , Policitemia Vera/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Evolução Clonal , Feminino , Humanos , Síndrome Hipereosinofílica/genética , Síndrome Hipereosinofílica/metabolismo , Janus Quinase 2/metabolismo , Leucemia/genética , Leucemia/metabolismo , Masculino , Camundongos , Oncogenes , Policitemia Vera/genética , Policitemia Vera/metabolismo
9.
Sci Robot ; 3(23)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141733

RESUMO

The force, speed, dexterity, and compact size required of prosthetic hands present extreme design challenges for engineers. Current prosthetics rely on high-quality motors to achieve adequate precision, force, and speed in a small enough form factor with the trade-off of high cost. We present a simple, compact, and cost-effective continuously variable transmission produced via projection stereolithography. Our transmission, which we call an elastomeric passive transmission (EPT), is a polyurethane composite cylinder that autonomously adjusts its radius based on the tension in a wire spooled around it. We integrated six of these EPTs into a three-dimensionally printed soft prosthetic hand with six active degrees of freedom. Our EPTs provided the prosthetic hand with about three times increase in grip force without compromising flexion speed. This increased performance leads to finger closing speeds of ~0.5 seconds (average radial velocity, ~180 degrees second-1) and maximum fingertip forces of ~32 newtons per finger.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25308436

RESUMO

Epidemiological studies have correlated exposure to ultraviolet-irradiated particulate matter with cardiovascular, respiratory, and lung diseases. This study investigated the DNA damage induced by two major inorganic particulate matter compounds found in diesel exhaust, ammonium nitrate and ammonium sulfate, on Burkitt's lymphoma (Raji) and hepatocellular carcinoma (HepG2) cell lines. We found a dose-dependent positive correlation of accumulated DNA damage at concentrations of ammonium nitrate (25 µg/ml, 50 µg/ml, 100 µg/ml, 200 µg/ml, 400 µg/ml) with ultraviolet exposure (250 J/m(2), 400 J/m(2), 600 J/m(2), 850 J/m(2)), as measured by the comet assay in both cell lines. There was a significant difference between the treated ammonium nitrate samples and negative control samples in Raji and HepG2 cells (p<0.001). Apoptosis was shown in Raji and HepG2 cells when exposed to high concentrations of ammonium nitrate (200 µg/ml and 400 µg/ml) for 1h in samples without ultraviolet exposure, as assessed by the comet assay. However, the level of apoptosis greatly diminished after ultraviolet exposure at these concentrations. Over a 24h period, at intervals of 1, 4, 8, 12, 18, and 24h, we also observed that ammonium nitrate decreased viability in Raji and HepG2 cell lines and inhibited cell growth. Ammonium sulfate-induced DNA damage was minimal in both cell lines, but there remained a significant difference (p<0.05) between the ultraviolet radiation treated and negative control samples. These results indicate that the inorganic particulate compound, ammonium nitrate, induced DNA strand breaks at all concentrations, and indications of apoptosis at high concentrations in Raji and HepG2 cells, with ultraviolet radiation preventing apoptosis at high concentrations. We hypothesize that ultraviolet radiation may inhibit an essential cellular mechanism, possibly involving p53, thereby explaining this phenomenon. Further studies are necessary to characterize the roles of apoptosis inhibition induced by DNA damage caused by inorganic particulate matter.


Assuntos
Dano ao DNA , Compostos Inorgânicos/toxicidade , Material Particulado/toxicidade , Raios Ultravioleta/efeitos adversos , Sulfato de Amônio/efeitos da radiação , Sulfato de Amônio/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Compostos Inorgânicos/efeitos da radiação , Testes de Mutagenicidade , Nitratos/efeitos da radiação , Nitratos/toxicidade , Material Particulado/efeitos da radiação
11.
J Neurosci ; 24(27): 6189-201, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15240811

RESUMO

Cytochrome c-initiated activation of apoptotic protease activating factor-1 (Apaf-1) is a key step in the mitochondrial-signaling pathway for the activation of death-executing caspases in apoptosis. This signaling pathway has been implicated in the pathophysiology of various neurological disorders, including ischemic brain injury. In this study, we have cloned a novel rat gene product, designated as Apaf-1-interacting protein (AIP), which functions as a dominant-negative inhibitor of the Apaf-1-caspase-9 pathway. AIP is constitutively expressed in the brain, but at substantially lower levels than Apaf-1 and caspase-9. AIP can directly bind to Apaf-1 in vitro through its N-terminal caspase-recruiting domain, and this protein interaction was increased in cells undergoing apoptosis. Cytosolic extracts from cells overexpressing AIP were highly resistant to cytochrome c- dATP-induced activation of caspase-9 and caspase-3. Gene transfection of AIP into cell lines, including the neuronal-differentiated PC12 cells, potently suppressed apoptosis induced by various pro-apoptotic stimuli. To further investigate the functional role of AIP in primary neurons and in the brain, an adeno-associated virus (AAV) vector carrying the AIP cDNA was constructed. AAV-mediated overexpression of AIP in primary cortical- hippocampal neurons markedly reduced cell death and caspase-3 activation triggered by protein kinase C inhibition, DNA damage, or oxygen- glucose deprivation. Moreover, intracerebral infusion of the AAV vector resulted in robust AIP expression in the hippocampus and significantly promoted CA1 neuronal survival after transient global cerebral ischemia. These results suggest that molecular targeting of the Apaf-1-caspase-9 signaling pathway may be a feasible neuroprotective strategy to enhance the endogenous threshold for caspase activation and prevent neuronal loss in stroke and related disorders.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspases/genética , Caspases/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Proteínas de Transporte/farmacologia , Caspase 9 , Caspases/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Clonagem Molecular , DNA Complementar/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ligação Proteica/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA