Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 912: 169404, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104807

RESUMO

Submerged aquatic vegetation (SAV) plays a fundamental ecological role in mediating carbon cycling within lakes, and its biomass is essential to assess the carbon sequestration potential of lake ecosystems. Remote sensing (RS) offers a powerful tool for large-scale SAV biomass retrieval. Given the underwater location of SAV, the spectral signal in RS data often exhibits weakness, capturing primarily horizontal structure rather than volumetric information crucial for biomass assessment. Fortunately, easily-measured SAV coverage can serve as an intermediary variable for difficultly-quantified SAV biomass inversion. Nevertheless, obtaining enough SAV coverage samples matching satellite image pixels for robust model development remains problematic. To overcome this challenge, we employed a UAV to acquire high-precision data, thereby replacing manual SAV coverage sample collection. In this study, we proposed an innovative strategy integrating unmanned aerial vehicle (UAV) and satellite data to invert large-scale SAV coverage, and subsequently estimate the biomass of the dominant SAV population (Potamogeton pectinatus) in Ulansuhai Lake. Firstly, a coverage-biomass model (R2 = 0.93, RMSE = 0.8 kg/m2) depicting the relationship between SAV coverage and biomass was developed. Secondly, in a designed experimental area, a high-precision multispectral image was captured by a UAV. Based on the Normalized Difference Water Index (NDWI), the UAV-based image was classified into non-vegetated and vegetated areas, thereby generating an SAV distribution map. Leveraging spatial correspondence between satellite pixels and the UAV-based SAV distribution map, the proportion of SAV within each satellite pixel, referred to as SAV coverage, was computed, and a coverage sample set matched with satellite pixels was obtained. Subsequently, based on the sample set, a satellite-scale SAV coverage estimation model (R2 = 0.78, RMSE = 14.05 %) was constructed with features from Sentinel-1 and Sentinel-2 data by XGBoost algorithm. Finally, integrating the coverage-biomass model with the obtained coverage inversion results, fresh biomass of SAV in Ulansuhai Lake was successfully estimated to be approximately 574,600 tons.


Assuntos
Ecossistema , Lagos , Biomassa , Dispositivos Aéreos não Tripulados , Água
3.
Environ Res ; 245: 117959, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123047

RESUMO

Lake eutrophication mitigation measures have been implemented by ecological water diversion, however, the responses of carbon cycle to the human-derived hydrologic process still remains unclear. With a famous river-to-lake water diversion activity at eutrophic Lake Taihu, we attempted to fill the knowledge gap with integrative field measurements (2011-2017) of gas carbon (CO2 and CH4) flux, including CO2-equivalent, and dissolved carbon (DOC and DIC) at water-receiving zone and reference zone. Overall, results showed the artificial water diversion activity increased gas carbon emissions. At water-receiving zone, total gas carbon (expressed as CO2-equivalent) emissions increased significantly due to the occurring of water diversion, with CO2 flux increasing from 9.31 ± 16.28 to 18.16 ± 12.96 mmol C m-2 d-1. Meanwhile, CH4 emissions at water-receiving zone (0.06 ± 0.05 mmol C m-2 d-1) was double of that at reference zone. Water diversion decreased DOC but increased DIC especially at inflowing river mouth. Temporal variability of carbon emissions and dissolved carbon were linked to water temperature, chlorophyll a, and nutrient, but less or negligible dependency on these environment variables were found with diversion occurring. Water diversion may increase gas carbon production via stimulating DOC mineralization with nutrient enrichment, which potentially contribute to increasing carbon emissions and decreasing DOC at the same time and the significant correlation between CO2 flux and CH4 flux. Our study provided new insights into carbon biogeochemical processes, which may help to predict carbon fate under hydrologic changes of lakes.


Assuntos
Lagos , Água , Humanos , Carbono , Dióxido de Carbono/análise , Clorofila A , China , Metano/análise
4.
Sci Total Environ ; 912: 169589, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151123

RESUMO

Inland waters are important sources of atmospheric methane (CH4), with a major contribution from the CH4 ebullition pathway. However, there is still a lack of CH4 ebullition flux (eFCH4) and their temperature sensitivity (Q10) in shallow lakes, which might lead to large uncertainties in CH4 emission response from aquatic to climate and environmental change. Herein, the magnitude and regulatory of two CH4 pathways (ebullition and diffusion) were studied in subtropical Lake Chaohu, China, using the real-time portable greenhouse gas (GHG) analyzer-floating chamber method at 18 sites over four seasons. eFCH4 (12.06 ± 4.10 nmol m-2 s-1) was the dominant contributing pathway (73.0 %) to the two CH4 emission pathways in Lake Chaohu. The whole-lake mass balance calculation demonstrated that 56.6 % of the CH4 emitted from the sediment escaped through the ebullition pathway. eFCH4 was significantly higher in the western (WL: 16.54 ± 22.22 nmol m-2 s-1) and eastern lake zones (EL: 11.89 ± 15.43 nmol m-2 s-1) than in the middle lake zone (ML: 8.86 ± 13.78 nmol m-2 s-1; p < 0.05) and were significantly higher in the nearshore lake zone (NL: 15.94 ± 19.58 nmol m-2 s-1) than in the pelagic lake zone (PL: 6.64 ± 12.37 nmol m-2 s-1; p < 0.05). eFCH4 was significantly higher in summer (32.12 ± 13.82 nmol m-2 s-1) than in other seasons (p < 0.05). eFCH4 had a strong temperature dependence. Sediment total organic carbon (STOC) is an important ecosystem level Q10 driver of eFCH4. The meta-analysis also verified that across ecosystems the ecosystem-level Q10 of eFCH4 was significantly positively correlated with STOC and latitude (p < 0.05). This study suggests that eFCH4 will become increasingly crucial in shallow lake ecosystems as climate change and human activities increase. The potential increase in ebullition fluxes in high-latitude lakes is of great importance.

5.
Environ Sci Technol ; 57(36): 13520-13529, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37651621

RESUMO

Lakes are major emitters of methane (CH4); however, a longstanding challenge with quantifying the magnitude of emissions remains as a result of large spatial and temporal variability. This study was designed to address the issue using satellite remote sensing with the advantages of spatial coverage and temporal resolution. Using Aqua/MODIS imagery (2003-2020) and in situ measured data (2011-2017) in eutrophic Lake Taihu, we compared the performance of eight machine learning models to predict diffusive CH4 emissions and found that the random forest (RF) model achieved the best fitting accuracy (R2 = 0.65 and mean relative error = 21%). On the basis of input satellite variables (chlorophyll a, water surface temperature, diffuse attenuation coefficient, and photosynthetically active radiation), we assessed how and why they help predict the CH4 emissions with the RF model. Overall, these variables mechanistically controlled the emissions, leading to the model capturing well the variability of diffusive CH4 emissions from the lake. Additionally, we found climate warming and associated algal blooms boosted the long-term increase in the emissions via reconstructing historical (2003-2020) daily time series of CH4 emissions. This study demonstrates the great potential of satellites to map lake CH4 emissions by providing spatiotemporal continuous data, with new and timely insights into accurately understanding the magnitude of aquatic greenhouse gas emissions.


Assuntos
Lagos , Imagens de Satélites , Clorofila A , Clima , Metano
6.
J Environ Manage ; 344: 118626, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453296

RESUMO

Lakes are recognized as important sources of carbon dioxide (CO2) emissions, which vary greatly across land use type. However, CO2 emissions from lakes in urban landscapes are generally overlooked despite their daily connections to human activity. Furthermore, the role of management actions in CO2 emissions remained unclear mostly because of the lack of long-term observations. Here, the CO2 partial pressure (pCO2) from two urban lakes (Lake Wuli and Lake Donghu) in eastern China were investigated based on 16-year (2002-2017) field measurements. This long-term measurements showed the annual mean pCO2 were 1150 ± 612 µatm for Lake Wuli and 1143 ± 887 µatm for Lake Donghu, with corresponding estimated flux of 21.12 ± 19.60 mmol m-2 d-1 and 16.42 ± 20.39 mmol m-2 d-1, respectively. This indicates significant CO2 evasion into the atmosphere. Strong links between CO2 and human-derived nutrients (e.g., ammonium) and dissolved organic carbon, dissolved oxygen, and trophic state index were found. Although pCO2 was relatively uniform across sites and seasons in each lake, substantial inter-annual variability with significant decreasing trends were found. The decrease in annual CO2 can be partly explained by the reduction of pollutant loadings with management actions, which held the hypotheses that management actions mitigated the CO2 emission risks. Overall, management actions (e.g., ecological restoration and municipal engineering) should be considered for better understanding the roles of anthropogenic aquatic ecosystems in carbon cycle.


Assuntos
Dióxido de Carbono , Lagos , Humanos , Dióxido de Carbono/análise , Ecossistema , Ciclo do Carbono , Estações do Ano , China
7.
Environ Pollut ; 309: 119767, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870528

RESUMO

China is the largest CO2 emitting country on Earth. During the COVID-19 pandemic, China implemented strict government control measures on both outdoor activity and industrial production. These control measures, therefore, were expected to significantly reduce anthropogenic CO2 emissions. However, large discrepancies still exist in the estimated anthropogenic CO2 emission reduction rate caused by COVID-19 restrictions, with values ranging from 10% to 40% among different approaches. Here, we selected Nanchang city, located in eastern China, to examine the impact of COVID-19 on CO2 emissions. Continuous atmospheric CO2 and ground-level CO observations from January 1st to April 30th, 2019 to 2021 were used with the WRF-STILT atmospheric transport model and a priori emissions. And a multiplicative scaling factor and Bayesian inversion method were applied to constrain anthropogenic CO2 emissions before, during, and after the COVID-19 pandemic. We found a 37.1-40.2% emission reduction when compared to the COVID-19 pandemic in 2020 with the same period in 2019. Carbon dioxide emissions from the power industry and manufacturing industry decreased by 54.5% and 18.9% during the pandemic period. The power industry accounted for 73.9% of total CO2 reductions during COVID-19. Further, emissions in 2021 were 14.3-14.9% larger than in 2019, indicating that economic activity quickly recovered to pre-pandemic conditions.


Assuntos
COVID-19 , Teorema de Bayes , Dióxido de Carbono/análise , China/epidemiologia , Humanos , Pandemias
8.
Bioorg Med Chem Lett ; 72: 128729, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35413415

RESUMO

Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated encouraging clinical outcomes for patients with EGFR-mutated non-small cell lung cancer, a considerable number of patients will develop drug resistance and eventually undergo disease progression after taking EGFR-TKIs for a period of time. EGFRdel19/T790M/C797S and EGFRL858R/T790M/C797S are two most prevalent tertiary EGFR mutants identified in Osimertinib-resistant tumors and currently there is no therapy approved clinically targeting these mutants. In this study, we designed and synthesized a series of novel 4th generation EGFR inhibitors based on scaffold of Brigatinib. After extensive SAR studies, compound 23, the most promising candidate, exhibited strong biochemical potencies against EGFRdel19/T790M/C797S, EGFRL858R/T790M/C797S and other clinically relevant EGFR mutants while sparing wild type EGFR. In cellular assays, compound 23 potently inhibited proliferation of BaF3EGFR del19/T790M/C797S and PC-9EGFR del19/T790M/C797S. Moreover, compound 23 demonstrated good DMPK profile in mouse PK study.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Compostos Organofosforados , Inibidores de Proteínas Quinases/química , Pirimidinas
9.
Huan Jing Ke Xue ; 43(4): 1930-1940, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393816

RESUMO

Intensified urbanization has been occurring in the eastern region of China in recent decades, and excessive industrial and household sewage has been discharged into lakes and reservoirs, which has directly lowered water quality and destructed the functions of aquatic ecosystems. Lakes and reservoirs are typically drinking water sources supplying water for metropolitan areas as well as large- and medium-sized cities. Chromophoric dissolved organic matter (CDOM) is the colored fraction of DOM, and its source and optical composition strongly affect water supply safety and the health of surrounding citizens. In April 2021, we collected 68 samples from Reservoir Changtan (n=11), Lake Taihu (n=25), Lake Hongze (n=18), and Lake Gaoyou (n=14), and we further carried out 28 days of laboratory bio-incubation, together with optical measurements and parallel factor analysis (EEMs-PARAFAC) to analyze the bio-degradability ω(BDOC), sources, and optical composition of CDOM in these waters. The results showed that after 28 days of laboratory bio-incubation, the bioavailability of dissolved organic carbon (BDOC) of the four lakes and reservoirs were all higher than 50%. PARAFAC results showed that CDOM collected from the four lakes was composed of four fluorescent components, including a terrestrial humic-like C1, a tryptophan-like C2, and tyrosine-like C3 and C4. Protein-like components (C2, C3, and C4) contributed importantly to the CDOM pool in the four waterbodies, and in Lake Hongze the contribution of C2-C4 was as high as (90.0±2.2)%. In Lake Hongze, total phosphorus (TP) correlated closely with C1-C3, indicating that those components can be used to trace the variability of TP. Among the four waterbodies, a254 was positively correlated with DOC (R2=0.96, P<0.01), indicating that a254 can be used to estimate the dynamics of DOC in these waters. In Lake Taihu, we found a low level of humification index (HIX) and a high level of biological index (BIX), indicating that autochthonous substances contributed importantly to the CDOM pool in this lake. In comparison, allochthonous sources contributed importantly to the CDOM pool in the remaining three waters. The enhanced monitoring of the discharge of industrial and agricultural effluents in the upstream watersheds of the four waters can help to protect the water quality and maintain healthy aquatic ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Lagos , China , Ecossistema , Espectrometria de Fluorescência , Qualidade da Água
10.
Sci Total Environ ; 769: 144558, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736232

RESUMO

Freshwaters are receiving growing concerns on atmospheric carbon dioxide (CO2) and methane (CH4) budget; however, little is known about the anthropogenic sources of CO2 and CH4 from river network in agricultural-dominated watersheds. Here, we chose such a typical watershed and measured surface dissolved CO2 and CH4 concentrations over 2 years (2015-2017) in Jurong Reservoir watershed for different freshwater types (river network, ponds, reservoir, and ditches), which located in Eastern China and were impacted by agriculture with high fertilizer N application. Results showed that significantly higher gas concentrations occurred in river network (CO2: 112 ± 36 µmol L-1; CH4: 509 ± 341 nmol L-1) with high nutrient concentrations. Dissolved CO2 and CH4 concentrations were supersaturated in all of the freshwater types with peak saturation ratios generally occurring in river network. Temporal variations in the gas saturations were positively correlated with water temperature. The saturations of CO2 and CH4 were positively correlated with each other in river network, and both of these saturations were also positively correlated with nutrient loadings, and negatively correlated with dissolved oxygen concentration. The highly agricultural river network acted as significant CO2 and CH4 sources with estimated emission fluxes of 409 ± 369 mmol m-2 d-1 for CO2 and 1.6 ± 1.2 mmol m-2 d-1 for CH4, and made a disproportionately large, relative to the area, contribution to the total aquatic carbon emission of the watershed. Our results suggested the aquatic carbon emissions accounted for 6% of the watershed carbon budget, and fertilizer N and watersheds land use played a large role in the aquatic carbon emission.

11.
Brief Bioinform ; 22(2): 1860-1883, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32249290

RESUMO

Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ácidos Nucleicos/administração & dosagem , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , DNA Tumoral Circulante/sangue , Metilação de DNA , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Ácidos Nucleicos/uso terapêutico
12.
Water Res ; 189: 116624, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242788

RESUMO

Growing evidence shows that riverine networks surrounding urban landscapes may be hotspots of riverine greenhouse gas (GHG) emissions. This study strengthens the evidence by investigating the spatial variability of diffusive GHG (N2O, CH4, CO2) emissions from river reaches that drain from different types of landscapes (i.e., urban, agricultural, mixed, and forest landscapes), in the Chaohu Lake basin of eastern China. Our results showed that almost all the rivers were oversaturated with dissolved GHGs. Urban rivers were identified as emission hotspots, with mean fluxes of 470 µmol m-2d-1 for N2O, 7 mmol m-2d-1 for CH4, and 900 mmol m-2d-1 for CO2, corresponding to ~14, seven, and two times of those from the non-urban rivers in the Chaohu Lake basin, respectively. Factors related to the high N2O and CH4 emissions in urban rivers included large nutrient supply and hypoxic environments. The factors affecting CO2 were similar in all the rivers, which were temperature-dependent with suitable environments that allowed rapid decomposition of organic matter. Overall, this study highlights that better recognition of the influence that river networks have on global warming is required-particularly when it comes to urban rivers, as urban land cover and populations will continue to expand in the future. Management measures should incorporate regional hotspots to more efficiently mitigate GHG emissions.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , China , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Rios
13.
Environ Sci Technol ; 54(21): 13709-13718, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33079540

RESUMO

Lakes play an important role in the global carbon cycle; however, there are still large uncertainties in the estimation of global lake carbon emission due to the limitations in conducting field surveys at large geographic scales. Using long-term Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery and field observation data in eutrophic Lake Taihu, we developed a novel approach to estimate the concentration of dissolved carbon dioxide (cCO2) in lakes. Based on the MODIS-derived chlorophyll-a concentration, lake surface temperature, diffuse attenuation coefficient of photosynthetically active radiation, and photosynthetically active radiation, a spatially explicit cCO2 model was developed using multivariate quadratic polynomial regression (coefficient of determination (R2) = 0.84, root-mean-square error (RMSE) = 11.81 µmol L-1, unbiased percent difference (UPD) = 22.46%). Monte Carlo simulations indicated that the model is stable with relatively small deviations in cCO2 estimates caused by input variables (UPD = 26.14%). MODIS data from 2003 to 2018 showed a significant declining trend (0.42 µmol L-1 yr-1, p < 0.05) in the annual mean cCO2. This was associated with a complex balance between the increasing algae biomass and decreasing external inputs of inorganic carbon, nutrients, and organic matter. The high spatiotemporal variabilities in cCO2 were attributed to river inputs and seasonal changes in temperature and algae biomass. The study shows that satellite remote sensing can play an important role in the field of inland water carbon cycling, providing timely much-needed insights into the drivers of the spatial and temporal changes in dissolved CO2 concentrations in inland waters.


Assuntos
Dióxido de Carbono , Lagos , Ciclo do Carbono , Dióxido de Carbono/análise , China , Clorofila A , Monitoramento Ambiental
14.
Environ Pollut ; 263(Pt A): 114457, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32247923

RESUMO

Increasing indirect nitrous oxide (N2O) emission from river networks as a result of enhanced human activities on landscapes has become a global issue, as N2O has been widely recognized as an important ozone-depleting greenhouse gas. However, indirect N2O emissions from different rivers, particularly for those that drain completely different landscapes, are poorly understood. Here, we investigated the spatial-temporal variability of N2O emissions among the different rivers in the Chaohu Lake Basin of Eastern China. Our results showed that river reaches in urban watersheds are the hotspots of N2O production, with a mean N2O concentration of ∼410 nmol L-1, which is 9-18 times greater than those mainly draining forested (23 nmol L-1), agricultural (42 nmol L-1) and mixed (45 nmol L-1) landscapes. Riverine dissolved N2O was generally supersaturated with respect to the atmosphere. Such N2O saturation can best be explained by nitrogen availability, except for those in the forested watersheds, where dissolved oxygen is thought to be the primary predictor. The estimated N2O fluxes in urban rivers reached ∼471 µmol m-2 d-1, a value of ∼22, 13, and 11 times that in forested, agricultural and mixed watersheds, respectively. Averaged riverine N2O emission factors (EF5r) of the forested, agricultural, urban and mixed watersheds were 0.066%, 0.12%, 0.95% and 0.16%, respectively, showing different deviations from the default EF5r that released by IPCC in 2019. This points to a need for more field measurements with wider spatial coverage and finer frequency to further refine the EF5r and to better reveal the mechanisms behind indirect N2O emissions as influenced by watershed landscapes.


Assuntos
Óxido Nitroso/análise , Rios , Agricultura , China , Monitoramento Ambiental
15.
Sci Total Environ ; 722: 138005, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208291

RESUMO

Lakes actively transform nitrogen (N) and emit disproportionately large amounts of N2O relative to their surface area. Studies have investigated the relative importance of denitrification or nitrification on N2O emissions; however, the linkage between N2O efflux and dissolved organic nitrogen (DON) and carbon (DOC) remains largely unknown. Long-term (2012-2017) seasonal field observations and a series of degradation experiments were used to unravel how DON composition impacts N2O emissions from Lake Taihu, China. In the northwestern part of the lake, large riverine inflow and high N2O emissions occur in all seasons (24.6 ± 25.2 µmol m-2 d-1), coincident with high levels of terrestrial DON and DOC here. The degradation of labile DON and DOC likely enhanced ammonification as supported by the correlations between NH4+-N and DON, DOC, a(350), and terrestrial humic-like C3. The area with large riverine inputs in the northwestern part of the lake was characterized by low DO which may enhance incomplete aerobic nitrification and incomplete denitrification, both leading to N2O production. Twenty days laboratory experiments indicated greater N2O production in the northwest inflow samples (N2O on day 20: 120.9 nmol L-1 and 17.3 nmol L-1 for bio- and photo-degradation samples, respectively) compared with the central lake samples (N2O on day 20: 20.3 nmol L-1 and 12.3 nmol L-1 for bio- and photo-degradation samples, respectively), despite both having low Chl-a. Our DON and DOC degradation experiments confirmed the occurrence of ammonification along with consumption of NH4+-N and thereafter NO3--N. Our results collectively suggest that terrestrial DON fueled ammonification, enhanced nitrification and incomplete denitrification, and thereby became an important contributor to the N2O efflux from Lake Taihu.

16.
Environ Pollut ; 263(Pt A): 114433, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222621

RESUMO

Inland waters emit large amounts of carbon dioxide (CO2) to the atmosphere, but emissions from urban lakes are poorly understood. This study investigated seasonal and interannual variations in the partial pressure of CO2 (pCO2) and CO2 flux from Lake Wuli, a small eutrophic urban lake in the heart of the Yangtze River Delta, China, based on a long-term (2000-2015) dataset. The results showed that the annual mean pCO2 was 1030 ± 281 µatm (mean ± standard deviation) with a mean CO2 flux of 1.1 ± 0.6 g m-2 d-1 during 2000-2015, suggesting that compared with other lakes globally, Lake Wuli was a significant source of atmospheric CO2. Substantial interannual variability was observed, and the annual pCO2 exhibited a decreasing trend due to improvements in water quality driven by environmental investment. Changes in ammonia nitrogen and total phosphorus concentrations together explained 90% of the observed interannual variability in pCO2 (R2 = 0.90, p < 0.01). The lake was dominated by cyanobacterial blooms and showed nonseasonal variation in pCO2. This finding was different from those of other eutrophic lakes with seasonal variation in pCO2, mostly because the uptake of CO2 by algal-derived primary production was counterbalanced by the production of CO2 by algal-derived organic carbon decomposition. Our results suggested that anthropogenic activities strongly affect lake CO2 dynamics and that environmental investments, such as ecological restoration and reducing nutrient discharge, can significantly reduce CO2 emissions from inland lakes. This study provides valuable information on the reduction in carbon emissions from artificially controlled eutrophic lakes and an assessment of the impact of inland water on the global carbon cycle.


Assuntos
Dióxido de Carbono/análise , Lagos , Ciclo do Carbono , China , Monitoramento Ambiental , Eutrofização , Pressão Parcial , Fósforo
17.
Water Res ; 170: 115331, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811989

RESUMO

Inland lakes receive growing attentions on eutrophication and their roles in global carbon cycle. However, understanding how inland lakes contribute to global carbon cycle is seriously hampered due to a shortage of long-term records. This study investigated the carbon dioxide (CO2) flux from the Lake Taihu, a large (2400 km2) and shallow (mean depth 1.9 m) eutrophic lake in subtropical region, based on a long-term (2000-2015) measurement of the partial pressure of carbon dioxide (pCO2) at high spatiotemporal resolution. We found that the Lake Taihu was a significant source of atmospheric CO2 with an average CO2 emission flux at 18.2 ± 8.4 mmol m-2 d-1 (mean±1standard deviation) and a mean annual pCO2 value of 778 ± 169 µatm. The highest pCO2 and CO2 flux were observed in eutrophic zone with a high external input of carbon and nutrient, and the lowest in non-eutrophic zones with no direct external input of nutrient and carbon. A substantial seasonal pattern in pCO2 was observed, particularly in eutrophic pelagic area, and was significantly negatively correlated with chlorophyll a. Long-term measurement showed the interannual variation in annual lake CO2 dynamics, which was highly sensitive to human-induced nutrient input. Watershed input of carbon and nutrient leads to the high CO2 level, counterbalancing the in-lake primary production. All lines of evidence suggest that human activities may have predominate contribution to CO2 source in the Lake Taihu, and this mechanism might be widespread in global freshwater lakes.


Assuntos
Dióxido de Carbono , Lagos , Ciclo do Carbono , China , Clorofila A , Eutrofização , Humanos
18.
Environ Pollut ; 251: 185-192, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31078090

RESUMO

Agriculture is one of major emission sources of nitrous oxide (N2O), an important greenhouse gas dominating stratospheric ozone destruction. However, indirect N2O emissions from agriculture watershed water surfaces are poorly understood. Here, surface-dissolved N2O concentration in water bodies of the agricultural watershed in Eastern China, one of the most intensive agricultural regions, was measured over a two-year period. Results showed that the dissolved N2O concentrations varied in samples taken from different water types, and the annual mean N2O concentrations for rivers, ponds, reservoir, and ditches were 30 ±â€¯18, 19 ±â€¯7, 16 ±â€¯5 and 58 ±â€¯69 nmol L-1, respectively. The N2O concentrations can be best predicted by the NO3--N concentrations in rivers and by the NH4+-N concentrations in ponds. Heavy precipitation induced hot moments of riverine N2O emissions were observed during farming season. Upstream waters are hot spots, in which the N2O production rates were two times greater than in non-hotspot locations. The modeled watershed indirect N2O emission rates were comparable to direct emission from fertilized soil. A rough estimate suggests that indirect N2O emissions yield approximately 4% of the total N2O emissions yield from N-fertilizer at the watershed scale. Separate emission factors (EF) established for rivers, ponds, and reservoir were 0.0013, 0.0020, and 0.0012, respectively, indicating that the IPCC (Inter-governmental Panel on Climate Change) default value of 0.0025 may overestimate the indirect N2O emission from surface water in eastern China. EF was inversely correlated with N loading, highlighting the potential constraints in the IPCC methodology for water with a high anthropogenic N input.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Óxido Nitroso/análise , Agricultura/métodos , China , Fertilizantes , Rios , Estações do Ano , Solo
19.
Sci Total Environ ; 672: 400-409, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30965256

RESUMO

Submerged macrophytes are important primary producers for shallow lake systems. So far, their overall role in regulating lake methane flux is a subject of debate because the oxygen produced by their roots can promote methane oxidation in the sediment but they can also enhance methanogenesis through organic substrate production. In this study, we used the eddy covariance method to investigate the temporal dynamics of the CH4 flux in a habitat of submerged macrophytes in Lake Taihu. The results show that the nighttime CH4 flux is on average 33% higher than the daytime flux, although a clear diurnal pattern is evident only in the spring. At the daily to the seasonal time scale, the sediment temperature is the main driver of the CH4 flux variations, implying higher methane production in the sediment at higher temperatures. The annual CH4 emission (6.12 g C m-2 yr-1) is much higher than the published whole-lake mean flux (1.12 g C m-2 yr-1) and that reported previously in the eutrophic phytoplankton zone of the lake (1.35 g C m-2 yr-1), indicating that the net effect of the submerged macrophytes is to enhance methane emission. At the annual time scale, 3.5% of the carbon gained by the net ecosystem production is lost to the atmosphere in the form of CH4.


Assuntos
Monitoramento Ambiental , Lagos/química , Metano/análise , Poluentes Químicos da Água/análise , Organismos Aquáticos , Plantas
20.
Sci Total Environ ; 647: 606-618, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30092516

RESUMO

Illegal sand mining activities are rampant in coastal and inland water around the world and result in increased water turbidity, reduced water transparency, damage to fish spawning sites and adverse effects on the health of aquatic ecosystems. However, many sand dredging vessels hide during the day and work at night, rendering conventional monitoring measures ineffective. In this study, illegal sand dredging activities and the associated aquatic environmental effects were investigated in Lake Hongze (the fourth largest freshwater lake in China) using both conventional daytime satellite data, including MODIS/Aqua and Landsat TM/ETM data as well as VIIRS Day/Night Band (DNB) nighttime light (NTL) data, the following results were obtained. (1) The Landsat data revealed that sand dredging vessels first appeared in February 2012 and their number (monthly average: 658) peaked in 2016, and sand dredging stopped after March 2017. (2) The VIIRS NTL data were satisfactory for monitoring nighttime illegal dredging activities, and they more accurately reflected the temporal and spatial distribution characteristics of dredging vessels due to their high frequency. (3) Observations from the MODIS data acquired since 2002 showed three distinct stages of changes in the suspended particulate matter (SPM) concentrations of Lake Hongze that were consistent with the temporal distributions of sand dredging vessels. (4) The contribution of dredging vessels to the increases in SPM concentration was quantitatively determined, and nighttime sand dredging activities were found to have disturbed the waters more significantly. (5) The effectiveness of government measures implemented at various stages to control illegal sand dredging activities were scientifically evaluated. This study provides technological support for government monitoring and the control of illegal sand dredging activities and can serve as a valuable reference for water bodies similar to Lake Hongze worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA