Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(1): 167-187, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36107150

RESUMO

Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.


Assuntos
Glycine max , Ferro , Glycine max/metabolismo , Ferro/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Transporte Biológico , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Simbiose/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Microbiol ; 13: 903467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875554

RESUMO

Foliar application of nitrogen to enhance crop productivity has been widely used. Melatonin is an effective regulator in promoting plant growth. However, the effects of melatonin and the combination of melatonin and nitrogen on soybeans yields production remain largely unknown. In this study, a field experiment was conducted to evaluate the effects and mechanisms of spraying leaves with melatonin and urea on soybeans. Foliar application of urea significantly increased soybean yields and melatonin did not affect the yields, while combination of melatonin and urea significantly reduced the yields compared to the application of urea alone. A leaf transcriptional profile was then carried out to reveal the underlying mechanism and found that foliar spraying of urea specifically induced the expression of genes related to amino acid transport and nitrogen metabolism. However, foliar application of melatonin significantly changed the transcriptional pattern established by urea application and increased the expression of genes related to abiotic stress signaling pathways. The effects of melatonin and urea treatment on soil microbiome were also investigated. Neither melatonin nor urea application altered the soil microbial alpha diversity, but melatonin application changed rhizosphere microbial community structure, whereas the combination of melatonin and urea did not. Melatonin or urea application altered the abundance of certain taxa. The number of taxa changed by melatonin treatment was higher than urea treatment. Collectively, our results provide new and valuable insights into the effects of foliar application of melatonin to urea and further show that melatonin exerts strong antagonistic effects on urea-induced soybean yields, gene expression and certain soil microorganisms.

3.
Curr Biol ; 32(4): 783-795.e5, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35081330

RESUMO

Legumes have evolved photosynthesis and symbiotic nitrogen fixation for the acquisition of energy and nitrogen nutrients. During the transition from heterotrophic to autotrophic growth, blue light primarily triggers photosynthesis and low soil nitrogen induces symbiotic nodulation. Whether and how darkness and blue light influence root symbiotic nodulation during this transition is unknown. Here, we show that short-term darkness promotes nodulation and that blue light inhibits nodulation through two soybean TGACG-motif-binding factors (STF1 and STF2), which are Papilionoideae-specific transcription factors and divergent orthologs of Arabidopsis ELONGATED HYPOCOTYL 5 (HY5). STF1 and STF2 negatively regulate soybean nodulation by repressing the transcription of nodule inception a (GmNINa), which is a central regulator of nodulation, in response to darkness and blue light. STF1 and STF2 are not capable of moving from the shoots to roots, and they act both locally and systemically to mediate darkness- and blue-light-regulated nodulation. We further show that cryptochromes GmCRY1s are required for nodulation in the dark and partially contribute to the blue light inhibition of nodulation. In addition, root GmCRY1s mediate blue-light-induced transcription of STF1 and STF2, and intriguingly, GmCRY1b can interact with STF1 and STF2 to stabilize the protein stability of STF1 and STF2. Our results establish that the blue light receptor GmCRY1s-STF1/2 module plays a pivotal role in integrating darkness/blue light and nodulation signals. Furthermore, our findings reveal a molecular basis by which photosensory pathways modulate nodulation and autotrophic growth through an intricate interplay facilitating seedling establishment in response to low nitrogen and light signals.


Assuntos
Arabidopsis , Fabaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA