Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
1.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891117

RESUMO

Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 µm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.


Assuntos
Fator 5 de Crescimento de Fibroblastos , Glutationa Peroxidase , Folículo Piloso , Via de Sinalização Wnt , , Animais , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Ovinos , Lã/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Edição de Genes , Hidrocortisona/metabolismo , Proliferação de Células , Sistemas CRISPR-Cas/genética
2.
Front Oncol ; 14: 1332522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863624

RESUMO

Rearrangements involving the neurotrophic-tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2, and NTRK3) have been identified as drivers in a wide variety of human cancers. However, the association between NTRK rearranged thyroid carcinoma and clinicopathological characteristics has not yet been established. In our study, we retrospectively reviewed medical records of thyroid cancer patients and identified 2 cases with NTRK rearrangement, no additional molecular alterations were observed in either of these cases. The fusion of the rearrangement in both cases was ETV6(E4)::NTRK3(E14). By analyzing the clinicopathological features of these two cases, we found that both were characterized by multiple tumor nodules, invasive growth, and central lymph node metastases, indicating the follicular subtype of papillary thyroid carcinoma. Immunohistochemical staining profiles showed CD56-, CK19+, Galectin-3+, HBME1+. These clinicopathological features suggest the possibility of ETV6-NTRK3 rearranged thyroid carcinoma and highlight the importance of performing gene fusion testing by FISH or NGS for these patients.

3.
Nat Methods ; 21(6): 1094-1102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840033

RESUMO

Voltage imaging with cellular specificity has been made possible by advances in genetically encoded voltage indicators. However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines the signal-to-noise ratio and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating while also maximizing signal detection efficiency. The resulting benefits in signal-to-noise ratio and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different genetically encoded voltage indicator classes.


Assuntos
Microscopia Confocal , Microscopia Confocal/métodos , Animais , Camundongos , Razão Sinal-Ruído
4.
World J Orthop ; 15(5): 390-399, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38835688

RESUMO

Combined femoral and acetabular anteversion is the sum of femoral and acetabular anteversion, representing their morphological relationship in the axial plane. Along with the increasing understanding of hip dysplasia in recent years, numerous scholars have confirmed the role of combined femoral and acetabular anteversion in the pathological changes of hip dysplasia. At present, the reconstructive surgery for hip dysplasia includes total hip replacement and redirectional hip preservation surgery. As an important surgery index, combined femoral and acetabular anteversion have a crucial role in these surgeries. Herein, we discuss the role of combined femoral and acetabular anteversion in pathological changes of hip dysplasia, total hip replacement, and redirectional hip preservation surgery.

5.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928176

RESUMO

Chemotherapy resistance in cancer is an essential factor leading to high mortality rates. Tumor multidrug resistance arises as a result of the autophagy process. Our previous study found that compound 1-nitro-2 acyl anthraquinone-leucine (C2) exhibited excellent anti-colorectal cancer (CRC) activity involving autophagy and apoptosis-related proteins, whereas its underlying mechanism remains unclear. A notable aspect of this study is how C2 overcomes the multidrug susceptibility of HCT116/L-OHP, a colon cancer cell line that is resistant to both in vitro and in vivo oxaliplatin (trans-/-diaminocyclohexane oxalatoplatinum; L-OHP). In a xenograft tumor mouse model, we discovered that the mixture of C2 and L-OHP reversed the resistance of HCT116/L-OHP cells to L-OHP and inhibited tumor growth; furthermore, C2 down-regulated the gene expression levels of P-gp and BCRP and decreased P-gp's drug efflux activity. It is important to note that while C2 re-sensitized the HCT116/L-OHP cells to L-OHP for apoptosis, it also triggered a protective autophagic pathway. The expression levels of cleaved caspase-3 and Beclin 1 steadily rose. Expression of PI3K, phosphorylated AKT, and mTOR were decreased, while p53 increased. We demonstrated that the anthraquinone derivative C2 acts as an L-OHP sensitizer and reverses resistance to L-OHP in HCT116/L-OHP cells. It suggests that C2 can induce autophagy in HCT116/L-OHP cells by mediating p53 and the PI3K/AKT/mTOR signaling pathway.


Assuntos
Antraquinonas , Autofagia , Oxaliplatina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Oxaliplatina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia/efeitos dos fármacos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Células HCT116 , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Nus , Linhagem Celular Tumoral
6.
Int J Ophthalmol ; 17(3): 454-465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721506

RESUMO

AIM: To identify disease-causative mutations in families with congenital cataract. METHODS: Two Chinese families with autosomal-dominant congenital cataract (ADCC) were recruited and underwent comprehensive eye examinations. Gene panel next-generation sequencing of common pathogenic genes of congenital cataract was performed in the proband of each family. Sanger sequencing was used to valid the candidate gene mutations and sequence the other family members for co-segregation analysis. The effect of sequence changes on protein structure and function was predicted through bioinformatics analysis. Major intrinsic protein (MIP)-wildtype and MIP-G29R plasmids were constructed and microinjected into zebrafish single-cell stage embryos. Zebrafish embryonic lens phenotypes were screened using confocal microscopy. RESULTS: A novel heterozygous mutation (c.85G>A; p.G29R) in the MIP gene was identified in the proband of one family. A known heterozygous mutation (c.97C>T; p.R33C; rs864309693) in MIP was found in the proband of another family. In-silico prediction indicated that the novel mutation might affect the MIP protein function. Zebrafish embryonic lens was uniformly transparent in both wild-type PCS2+MIP and mutant PCS2+MIP. CONCLUSION: Two missense mutations in the MIP gene in Chinese cataract families are identified, and one of which is novel. These findings expand the genetic spectrum of MIP mutations associated with cataracts. The functional studies suggest that the novel MIP mutation might not be a gain-of-function but a loss-of-function mutation.

7.
World J Gastrointest Oncol ; 16(5): 1890-1907, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764814

RESUMO

BACKGROUND: Serpin peptidase inhibitor clade H member 1 (SERPINH1) was initially recognized as an oncogene implicated in various human malignancies. Nevertheless, the clinical relevance and functional implications of SERPINH1 in colorectal cancer (CRC) remain largely elusive. AIM: To investigate the effects of SERPINH1 on CRC cells and its specific mechanism. METHODS: Quantitative real-time polymerase chain reaction, western blotting analysis, The Cancer Genome Atlas data mining and immunohistochemistry were employed to examine SERPINH1 expression in CRC cell lines and tissues. A series of in-vitro assays were performed to demonstrate the function of SERPINH1 and its possible mechanisms in CRC. RESULTS: SERPINH1 demonstrated elevated expression levels in both CRC cells and tissues, manifested at both mRNA and protein tiers. Elevated SERPINH1 levels correlated closely with advanced T stage, lymph node involvement, and distant metastasis, exhibiting a significant association with poorer overall survival among CRC patients. Subsequent investigations unveiled that SERPINH1 overexpression notably bolstered CRC cell proliferation, invasion, and migration in vitro, while conversely, SERPINH1 knockdown elicited the opposite effects. Gene set enrichment analysis underscored a correlation between SERPINH1 upregulation and genes associated with cell cycle regulation. Our findings underscored the capacity of heightened SERPINH1 levels to expedite G1/S phase cell cycle progression via phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin pathway activation, thereby facilitating CRC cell invasion and migration. CONCLUSION: These findings imply a crucial involvement of SERPINH1 in the advancement and escalation of CRC, potentially positioning it as a novel candidate for prognostic assessment and therapeutic intervention in CRC management.

8.
Microsyst Nanoeng ; 10: 58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725436

RESUMO

This work presents a single-structure 3-axis Lorentz force magnetometer (LFM) based on an AlN-on-Si MEMS resonator. The operation of the proposed LFM relies on the flexible manipulation of applied excitation currents in different directions and frequencies, enabling the effective actuation of two mechanical vibration modes in a single device for magnetic field measurements in three axes. Specifically, the excited out-of-plane drum-like mode at 277 kHz is used for measuring the x- and y-axis magnetic fields, while the in-plane square-extensional mode at 5.4 MHz is used for measuring the z-axis magnetic field. The different configurations of applied excitation currents ensure good cross-interference immunity among the three axes. Compared to conventional capacitive LFMs, the proposed piezoelectric LFM utilizes strong electromechanical coupling from the AlN layer, which allows it to operate at ambient pressure with a high sensitivity. To understand and analyze the measured results, a novel equivalent circuit model for the proposed LFM is also reported in this work, which serves to separate the effect of Lorentz force from the unwanted capacitive feedthrough. The demonstrated 3-axis LFM exhibits measured magnetic responsivities of 1.74 ppm/mT, 1.83 ppm/mT and 6.75 ppm/mT in the x-, y- and z-axes, respectively, which are comparable to their capacitive counterparts.

9.
Insects ; 15(5)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786927

RESUMO

In this study, a new species of the subgenus Pullus belonging to the Scymnus genus from Pakistan, Scymnus (Pullus) cardi sp. nov., was described and illustrated, with information on its distribution, host plants, and prey. Additionally, the completed mitochondrial genome (mitogenome) of the new species using high-throughput sequencing technology was obtained. The genome contains the typical 37 genes (13 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs) and a non-coding control region, and is arranged in the same order as that of the putative ancestor of beetles. The AT content of the mitogenome is approximately 85.1%, with AT skew and GC skew of 0.05 and -0.43, respectively. The calculated values of relative synonymous codon usage (RSCU) determine that the codon UUA (L) has the highest frequency. Furthermore, we explored the phylogenetic relationship among 59 representatives of the Coccinellidae using Bayesian inference and maximum likelihood methods, the results of which strongly support the monophyly of Coccinellinae. The phylogenetic results positioned Scymnus (Pullus) cardi in a well-supported clade with Scymnus (Pullus) loewii and Scymnus (Pullus) rubricaudus within the genus Scymnus and the tribe Scymnini. The mitochondrial sequence of S. (P.) cardi will contribute to the mitochondrial genome database and provide helpful information for the identification and phylogeny of Coccinellidae.

10.
Toxics ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668527

RESUMO

The sweet potato weevil Cylas formicarius is a notorious underground pest in sweet potato (Ipomoea batatas L.). However, little is known about the effects of cadmium (Cd) stress on weevil biology and resistance to pesticides and biotic agents. Therefore, we fed sweet potato weevils with Cd-contaminated sweet potato and assessed adult food intake and survival and larval developmental duration and mortality rates, as well as resistance to the insecticide spinetoram and susceptibility to the entomopathogenic fungus Beauveria bassiana. With increasing Cd concentration, the number of adult weevil feeding holes, adult survival and life span, and larval developmental duration decreased significantly, whereas larval mortality rates increased significantly. However, at the lowest Cd concentration (30 mg/L), adult feeding was stimulated. Resistance of adult sweet potato weevils to spinetoram increased at low Cd concentration, whereas Cd contamination did not affect sensitivity to B. bassiana. Thus, Cd contamination affected sweet potato weevil biology and resistance, and further studies will investigate weevil Cd accumulation and detoxification mechanisms.

11.
Front Oncol ; 14: 1380093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686193

RESUMO

Background: Genome instability plays a crucial role in promoting tumor development. Germline mutations in genes responsible for DNA repair are often associated with familial cancer syndromes. A noticeable exception is the CHEK1 gene. Despite its well-established role in homologous recombination, germline mutations in CHEK1 are rarely reported. Case presentation: In this report, we present a patient diagnosed with ovarian clear cell carcinoma who has a family history of cancer. Her relatives include a grandfather with esophageal cancer, a father with gastric cancer, and an uncle with a brain tumor. The patient carried a typical genomic profile of clear cell carcinoma including mutations in KRAS, PPP2R1A, and PIK3R1. Importantly, her paired peripheral blood cells harbored a germline CHEK1 mutation, CHEK1 exon 6 c.613 + 2T>C, which was also found in her father. Unfortunately, the CHEK1 status of her grandfather and uncle remains unknown due to the unavailability of their specimens. Further evaluation via RT-PCR confirmed a splicing error in the CHEK1 gene, resulting in truncation at the kinase domain region, indicative of a loss-of-function mutation. Conclusion: This case highlights a rare germline CHEK1 mutation within a family with a history of cancer. The confirmed splicing error at the mRNA level underscores the functional consequences of this mutation. Documenting such cases is vital for future evaluation of inheritance patterns, clinical penetrance of the mutation, and its association with specific cancer types.

12.
Front Mol Biosci ; 11: 1367331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596618

RESUMO

Osteosarcoma, the most prevalent primary bone tumor in children and young adults, can often be successfully treated with standard chemotherapy and surgery when diagnosed at an early stage. However, patients presenting with metastases face significant challenges in achieving a cure. Despite advancements in classical therapies over the past few decades, clinical outcomes for osteosarcoma have not substantially improved. Recently, there has been increased understanding of the biology of osteosarcoma, leading to the identification of new therapeutic targets. One such target is MET, a tyrosine kinase receptor for Hepatocyte Growth Factor (HGF) encoded by the MET gene. In vitro and in vivo studies have demonstrated that the HGF/MET pathway plays a crucial role in cancer growth, invasion, metastasis, and drug resistance across various cancers. Clinical trials targeting this pathway are already underway for lung cancer and hepatocellular carcinoma. Moreover, MET has also been implicated in promoting osteosarcoma progression. This review summarizes 3 decades' worth of research on MET's involvement in osteosarcoma and further explores its potential as a therapeutic target for patients with this disease.

13.
Plant Physiol Biochem ; 210: 108577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579542

RESUMO

The JASMONATE ZIM DOMAIN (JAZ) proteins are a key inhibitors of the jasmonic acid (JA) signaling pathway that play an important role in the regulation of plant growth and development and environmental stress responses. However, there is no systematic identification and functional analysis of JAZ gene family members in sugarcane. In this study, a total of 49 SsJAZ genes were identified from the wild sugarcane species Saccharum spontaneum genome that were unevenly distributed on 13 chromosomes. Phylogenetic analysis showed that all SsJAZ members can be divided into six groups, and most of the SsJAZ genes contained photoreactive and ABA-responsive elements. RNA-seq analysis revealed that SsJAZ1-1/2/3/4 and SsJAZ7-1 were significantly upregulated under drought stress. The transcript level of ScJAZ1 which is the homologous gene of SsJAZ1 in modern sugarcane cultivars was upregulated by JA, PEG, and abscisic acid (ABA). Moreover, ScJAZ1 can interact with three other JAZ proteins to form heterodimers. The spatial and temporal expression analysis showed that SsJAZ2-1/2/3/4 were highly expressed in different tissues and growth stages and during the day-night rhythm between 10:00 and 18:00. Overexpression of ScJAZ2 in Arabidopsis accelerated flowering through activating the expression of AtSOC1, AtFT, and AtLFY. Moreover, the transcription level of ScJAZ2 was about 30-fold in the early-flowering sugarcane variety than that of the non-flowering variety, indicating ScJAZ2 positively regulated flowering. This first systematic analysis of the JAZ gene family and function analysis of ScJAZ1/2 in sugarcane provide key candidate genes and lay the foundation for sugarcane breeding.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Filogenia , Família Multigênica , Secas , Oxilipinas/metabolismo , Estresse Fisiológico/genética , Ciclopentanos/metabolismo
14.
J Pharm Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484876

RESUMO

An inspection in tablet appearance integrity before bottling is regarded as a routine task in a pharmaceutical factory. Although some methods such as automated optical instrument, video or artificial intelligence (AI) are currently available in industry, it usually pays for a complex computational process as well as high cost. Based on the symmetry of tablet appearance in reality, this study develops a biaxial scanning slope symmetry algorithm to realize a dynamic real-time tablet defect detection with a simple arithmetic operation. First, the tablet is discretely scanned using image sensor in two axes, i.e. X and Y directions, simultaneously. Second, the analogy output signals generated from the sensor during the scanning process is discretely digitized and stored in an array. Third, the coordinate of center point in the series data array is identified from every line scanning. Fourth, every section slope between two nearby center points from the first to last lines is formulated and calculated sequentially. Finally, the square mean error (SME) is used to evaluate the shape defect situation according to all accumulated errors from every slope variation. The experimental results verify that the proposed algorithm can achieve both fast and accurate detection performance.

15.
Artif Intell Med ; 149: 102799, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462291

RESUMO

How to present an intelligent model based on known diagnostic knowledge to assist medical diagnosis and display the reasoning process is an interesting issue worth exploring. This study developed a novel intelligent model for visualized inference of medical diagnosis with a case of Traditional Chinese Medicine (TCM). Four classes of TCM's diagnosis composed of Yin deficiency, Liver Yin deficiency, Kidney Yin deficiency, and Liver-Kidney Yin deficiency were selected as research examples. According to the knowledge of diagnostic points in "Diagnostics of TCM", a total of 2000 samples for training and testing were randomly generated for the four classes of TCM's diagnosis. In addition, a total of 60 clinical samples were collected from hospital clinical cases. Training samples were sent to the pre-training language model of Chinese Bert for training to generate intelligent diagnostic module. Simultaneously, a mathematical algorithm was developed to generate inferential digraphs. In order to evaluate the performance of the model, the values of accuracy, F1 score, Mse, Loss and other indicators were calculated for model training and testing. And the confusion matrices and ROC curves were plotted to estimate the predictive ability of the model. The novel model was also compared with RF and XGBOOST. And some instances of inferential digraphs with the model were displayed and analyzed. It may be a new attempt to solve the problem of interpretable and inferential intelligent models in the field of artificial intelligence on medical diagnosis of TCM.


Assuntos
Medicina Tradicional Chinesa , Deficiência da Energia Yin , Humanos , Deficiência da Energia Yin/diagnóstico , Inteligência Artificial , Algoritmos , Fígado
16.
Nat Commun ; 15(1): 2313, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485978

RESUMO

Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase.

17.
Sci Total Environ ; 927: 171876, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531445

RESUMO

Textile industry uses varieties of chemicals including per- and polyfluoroalkyl substances (PFAS). PFAS are known to be persistent and incompletely removed in wastewater treatment plants (WWTPs). So far, little is known about what types of PFAS are used in the textile industry and their potential risks. Here we investigated PFAS in two WWTPs and a receiving river of a textile industrial park in Guangxi, China, by using both target and non-target analyses over a two-year period. The target analysis identified 11 specific PFAS, while the non-target analysis revealed a list of 648 different PFAS, including both legacy and emerging substances. Notably, perfluorooctanoic acid (PFOA) was still the most prevalent compound detected. Of particular concern was the finding that the investigated WWTPs, which employs an A/O (Anaerobic/Aerobic) process, exhibited a poor removal efficiency for PFAS. The average removal rate was only 22.0 %, indicating that the current treatment processes are inadequate in effectively mitigating PFAS contamination. Correlation analysis further highlighted the potential for PFAS to be transported from WWTPs to the receiving river, revealing a significant and strong positive correlation between the PFAS in the WWTP effluent and those of the river. Perfluorooctanesulfonic acid (PFOS) and two emerging PFAS (DTXSID30240816 and DTXSID90240817) were identified to have high ecological risks in the receiving river. Notably, these two emerging PFAS are homologues, and their presence in WWTPs has been poorly reported. The findings highlight the wide use and persistence of PFAS in current textile WWTPs, indicating potential long term risks to the receiving environment.

18.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419081

RESUMO

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Assuntos
Diterpenos do Tipo Caurano , Hipertermia Induzida , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Neoplasias Nasofaríngeas/patologia , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
19.
Cell Commun Signal ; 22(1): 153, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414063

RESUMO

Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.


Assuntos
Antineoplásicos , Produtos Biológicos , Tumores do Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Epigênese Genética , Pirimidinas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Mutação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia
20.
Front Pediatr ; 12: 1350993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390275

RESUMO

Objective: The objective of this study was to compare the midterm efficacy of Kirschner wires and elastic intramedullary nails after the closed reduction treatment of Judet 3 radial neck fractures in children. Methods: This was a retrospective multicenter study of patients diagnosed with Judet type 3 radial neck fractures who underwent closed reduction and internal fixation at four tertiary hospitals from January 2019 to December 2021. Gender, age, fracture type, operation time, follow-up time, x-ray results and complications were collected. The recovery of elbow joint between the two internal fixation methods, elbow motion and complications at the last follow-up were compared. Results: The average operation time of EIN group was statistical significantly increased compared with KW group. There were no significant differences in MEPS score and ROM 3 months after surgery between the two groups, but the ROR Angle of EIN group was statistical significantly increased compared with KW group 3 months after surgery. There were no significant differences in MEPS score, ROM and ROR at the last follow-up. The incidence of complications in EIN group was significantly lower than that in KW group. Conclusion: The use of elastic intramedullary nails fixation or Kirschner wires fixation in the treatment of radial neck fractures in children can both achieve satisfactory fracture reduction and healing. Compared with elastic intramedullary nails, the operation time of Kirschner wires fixation is shorter, and the internal fixation does not need to be removed under anesthesia again, but the complication rate is higher.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA