Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 15(1): 46, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076846

RESUMO

We propose a new method for regulating valley pseudomagnetoresistance in ballistic graphene-based valley field-effect transistors by taking into account the Y-shaped Kekulé lattice distortion and electric barrier. The device involves valley injection and valley detection by ferromagnetic-strain source and drain. The valley manipulation in the channel is achieved via the Y-shaped Kekulé lattice distortion and electric barrier. The central mechanism of these devices lies on Y-shaped Kekulé lattice distortion in graphene can induce a valley precession, thus controlling the valley orientation of channel electrons and hence the current collected at the drain. We found that the tuning external bias voltage makes the valley pseudomagnetoresistance oscillate between positive and negative values and colossal tunneling valley pseudomagnetoresistance of over 30,000% can be achieved. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.

2.
Nanoscale Res Lett ; 14(1): 322, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31617005

RESUMO

Electronic structures of monolayer InSe with a perpendicular electric field are investigated. Indirect-direct-indirect band gap transition is found in monolayer InSe as the electric field strength is increased continuously. Meanwhile, the global band gap is suppressed gradually to zero, indicating that semiconductor-metal transformation happens. The underlying mechanisms are revealed by analyzing both the orbital contributions to energy band and evolution of band edges. These findings may not only facilitate our further understanding of electronic characteristics of layered group III-VI semiconductors, but also provide useful guidance for designing optoelectronic devices.

3.
Sci Rep ; 7(1): 14636, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116113

RESUMO

Spin-dependent energy bands and transport properties of ferromagnetic-strain graphene superlattices are studied. The high spin polarization appears at the Dirac points due to the presence of spin-dependent Dirac points in the energy band structure. A gap can be induced in the vicinity of Dirac points by strain and the width of the gap is enlarged with increasing strain strength, which is beneficial for enhancing spin polarization. Moreover, a full spin polarization can be achieved at large strain strength. The position and number of the Dirac points corresponding to high spin polarization can be effectively manipulated with barrier width, well width and effective exchange field, which reveals a remarkable tunability on the wavevector filtering behavior.

4.
Sci Rep ; 7(1): 8854, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821764

RESUMO

A helical type edge state, which is generally supported only on graphene with zigzag boundaries, is found to also appear in armchair graphene nanoribbons in the presence of intrinsic spin-orbit coupling and a suitable strain. At a critical strain, there appears a quantum phase transition from a quantum spin Hall state to a trivial insulator state. Further investigation shows that the armchair graphene nanoribbons with intrinsic spin-orbit coupling, Rashba spin-orbit coupling, effective exchange fields and strains also support helical-like edge states with a unique spin texture. In such armchair graphene nanoribbons, the spin directions of the counterpropogating edge states on the same boundary are always opposite to each other, while is not conserved and the spins are canted away from the -direction due to the Rashba spin-orbit coupling, which is different from the case of the zigzag graphene nanoribbons. Moreover, the edge-state energy gap is smaller than that in zigzag graphene nanoribbons, even absent in certain cases.

5.
J Phys Condens Matter ; 29(39): 395303, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28722684

RESUMO

We theoretically investigate the valley precession and valley polarization in graphene under inter-valley coupling. Our results show that the inter-valley coupling can induce valley polarization in graphene and also precess valleys in real space in a manner similar to the Rashba spin-orbit interaction rotating spins. Moreover, using strain modulation, we can achieve high valley polarization with large valley-polarized currents. These findings provide a new way to create and manipulate valley polarization in graphene.

7.
J Phys Condens Matter ; 29(4): 045304, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27897148

RESUMO

We investigated the edge states and quantum phase transition in graphene under an in-plane effective exchange field. The result shows that the combined effects of the in-plane effective exchange field and a staggered sublattice potential can induce zero-energy flat bands of edge states. Such flat-band edge states can evolve into helical-like ones in the presence of intrinsic spin-orbit coupling, with a unique spin texture. We also find that the bulk energy gap induced by the spin-orbit coupling and staggered sublattice potential can be closed and reopened with the in-plane effective exchange field, and the reopened bulk gap can be even larger than that induced by only the spin-orbit coupling and staggered sublattice potential, which is different from the case of an out-of-plane effective exchange field. The calculated spin-dependent Chern numbers suggest that the bulk gap closing and reopening is accompanied by a quantum phase transition from a trivial insulator phase across a metal phase into a spin-dependent quantum Hall phase.

8.
Sci Rep ; 6: 21590, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898836

RESUMO

We propose a graphene-based full valley- and spin-polarization device based on strained graphene with Rashba spin orbit coupling and magnetic barrier. The underlying mechanism is the coexistence of the valley and single spin band gaps in a certain Fermi energy. By aligning the Fermi energy in the valley and single spin band gaps, remarkable valley- and spin-polarization currents can be accessed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA