Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(1): 016601, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242675

RESUMO

Topological photonic states provide intriguing strategies for robust light manipulations, however, it remains challenging to perfectly excite these topological eigenstates due to their complicated mode profiles. In this work, we propose to realize the exact eigenmode of the topological edge states by supersymmetric (SUSY) structures. By adiabatically transforming the SUSY partner to its main topological structure, the edge modes can be perfectly excited with simple single-site input. We experimentally verify our strategy in integrated silicon waveguides in telecommunication wavelength, showing a broad working bandwidth. Moreover, a shortcut-to-adiabaticity strategy is further applied to speed up the adiabatic pump process by inverse-design approaches, thus enabling fast mode evolutions and leading to reduced device size. Our method is universal and beneficial to the topology-based or complex eigenmodes systems, ranging from photonics and microwaves to cold atoms and acoustics.

2.
Light Sci Appl ; 12(1): 288, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044390

RESUMO

Polarimetry plays an indispensable role in modern optics. Nevertheless, the current strategies generally suffer from bulky system volume or spatial multiplexing scheme, resulting in limited performances when dealing with inhomogeneous polarizations. Here, we propose a non-interleaved, interferometric method to analyze the polarizations based on a tri-channel chiral metasurface. A deep convolutional neural network is also incorporated to enable fast, robust and accurate polarimetry. Spatially uniform and nonuniform polarizations are both measured through the metasurface experimentally. Distinction between two semblable glasses is also demonstrated. Our strategy features the merits of compactness and high spatial resolution, and would inspire more intriguing design for detecting and sensing.

3.
Opt Lett ; 48(22): 5895-5898, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966746

RESUMO

Metasurfaces, composed of sub-wavelength structures, have a powerful capability to manipulate light propagations. However, metasurfaces usually work either in pure reflection mode or pure transmission mode. Achieving full-space manipulation of light at will in the optical region is still challenging. Here we propose a design method of full-space meta-device containing a bilayer metasurface sandwiching 1D photonic crystal to manipulate the transmitted and reflected wave independently. To provide a proof-of-concept demonstration, a device is proposed to show the light focusing in transmission and a vortex beam in reflection. Meanwhile, a device focusing the reflected light with oblique 45° incidence and the transmitted light with normal incidence is designed to indicate its application potential in augmented reality (AR) application. Our design provides a promising way to enrich the multifunctional meta-devices for potential applications.

4.
Opt Express ; 31(21): 33873-33882, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859157

RESUMO

Correction of chromatic aberration is an important issue in color imaging and display. However, realizing broadband achromatic imaging by a singlet lens with high comprehensive performance still remains challenging, though many achromatic flat lenses have been reported recently. Here, we propose a deep-learning-enhanced singlet planar imaging system, implemented by a 3 mm-diameter achromatic flat lens, to achieve relatively high-quality achromatic imaging in the visible. By utilizing a multi-scale convolutional neural network (CNN) imposed to an achromatic multi-level diffractive lens (AMDL), the white light imaging qualities are significantly improved in both indoor and outdoor scenarios. Our experiments are fulfilled via a large paired imaging dataset with respect to a 3 mm-diameter AMDL, which guaranteed with achromatism in a broad wavelength range (400-1100 nm) but a relative low efficiency (∼45%). After our CNN enhancement, the imaging qualities are improved by ∼2 dB, showing competitive achromatic and high-quality imaging with a singlet lens for practical applications.

5.
Opt Express ; 31(13): 21399-21406, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381239

RESUMO

Metasurface can be used in combination with singlet refractive lens to eliminate chromaticity, in which the metasurface usually works as a dispersion compensator. Such a kind of hybrid lens, however, usually has residual dispersion due to the limit of meta unit library. Here, we demonstrate a design method that considers the refraction element and metasurface together as a whole to achieve large scale achromatic hybrid lens with no residual dispersion. The tradeoff between the meta-unit library and the characteristics of resulting hybrid lenses is also discussed in detail. As a proof of concept, a centimeter scale achromatic hybrid lens is realized, which shows significant advantages over refractive lenses and hybrid lenses designed by previous methods. Our strategy would provide guidance for designing high-performance macroscopic achromatic metalenses.

6.
Light Sci Appl ; 11(1): 323, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357364

RESUMO

Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However, realizing a large scale achromatic flat lens with high performance still remains a big challenge. Here, we developed a new framework in designing achromatic multi-level diffractive lenses by light coherence optimization, which enables the implementation of large-scale flat lenses under non-ideal conditions. As results, a series achromatic polymer lenses with diameter from 1 to 10 mm are successfully designed and fabricated. The subsequent optical characterizations substantially validate our theoretical framework and show relatively good performance of the centimeter-scale achromatic multi-level diffractive lenses with a super broad bandwidth in optical wavelengths (400-1100 nm). After comparing with conventional refractive lens, this achromatic lens shows significant advantages in white-light imaging performance, implying a new strategy in developing practical planar optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA