Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2357367, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775124

RESUMO

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Fotossíntese , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , Fotossíntese/genética , Resposta ao Choque Térmico/genética , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética
2.
Plant Physiol Biochem ; 205: 108196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000236

RESUMO

Aldehyde dehydrogenases (ALDHs) are NAD(P)-dependent enzymes that oxidize aliphatic and aromatic aldehydes. They play crucial roles in various biological processes and plant responses to stress. The impact of high temperatures on jujube quality and yield has been well documented. Nevertheless, the involvement of ALDHs in the response to heat stress remains poorly understood. This study aimed to identify ZjALDHs in the jujube genome (Ziziphus jujuba var. spinosa) and conducted in silico analyses. Phylogenetic analyses indicated that ALDHs in plants, including jujube, can be divided into ten families, and members from the same family share conserved gene and protein structures. Quantitative real-time PCR (qRT-PCR) and ß-glucuronidase (GUS) histochemical staining were used to analyze the expression patterns of ZjALDHs in response to elevated temperatures. We identified a ZjALDH (ZjALDH3F3) gene displaying a significant upregulation and down-regulation, respectively in heat-resistant (HR) and heat-sensitive (HS) jujube in response to heat treatments. Such specific responses are probably attributed to the different heat-responsive cis-elements of ZjALDH3F3 in HR and HS jujubes. ZjALDH3F3 over-expressed in tobacco increased heat tolerance, as evidenced by the reduced accumulation of reactive oxygen species (ROS) and elevated activity of antioxidant enzymes. The qRT-PCR results indicated that the expression of antioxidant enzymes, abscisic acid (ABA), and stress-responsive genes was enhanced in transgenic tobacco. This study sheds novel light on the function of ZjALDHs in heat resistance of jujube.


Assuntos
Ziziphus , Ziziphus/genética , Ziziphus/metabolismo , Filogenia , Antioxidantes/metabolismo , Temperatura , Genoma de Planta , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA