Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 389, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512521

RESUMO

To test the serial discontinuity concept (SDC) predictions in a regulated river ecosystem, environmental parameters and phytoplankton community structure were determined in a subtropical river (China) which was regulated by 11 cascade dams. Our results showed that total phosphorus (TP) and silicate during the wet period in several dams supported the SDC predictions. Variations of phytoplankton species composition in several cascade dams, such as Datengxia (DTX) and Changzhou (CZ), also supported the SDC predictions. Moreover, the stations near the dams showed the maximum or minimum values of total species numbers in each cascade segment. Predictive model indicated that the types of phytoplankton decreased in the middle reaches, conforming to SDC predictions. In the whole system of cascading dams, an increase in silicate concentration and phytoplankton communities in the downstream was also consistent with SDC predictions. Therefore, these findings aligned with the SDC predictions in the aspects of both single dam and whole cascade dam system to some extent. In future research, our aim is to further investigate the effects of cascade damming on additional phytoplankton-related indices in this aquatic ecosystem. We hope to gather more comprehensive data to fully validate the SDC predictions.


Assuntos
Ecossistema , Fitoplâncton , Biomarcadores Ambientais , Monitoramento Ambiental , China , Silicatos
2.
Environ Monit Assess ; 196(3): 274, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363428

RESUMO

Although phytoplankton is well known as robust bioindicators to aquatic environments, their indicating functions based on different community parameters remain to be understood. In order to filter effective bioindicators in aquatic ecosystems, four phytoplankton community parameters including species richness (SR), total biomass (SBP), functional groups (FGBP), and size-fractionated chlorophyll-a (SC) were demonstrated in a subtropical artificial lake with ecological restoration in South China. Our results indicated that all the above four parameters exhibited high sensitivity to environmental variations and illustrated distinct aspects of indicating functions to aquatic environments due to their individual biological characteristics. Based on FGBP, both spatial and temporal differences in phytoplankton community could be identified. SR and SBP only classified the spatial and temporal distributions, respectively, while SC could distinguish the sewage outfalls from other sites. In terms of ecological management, two parameters (SR and FGBP) could distinguish the restored waters from untreated environments as non-point source pollution, and another parameter SC could indicate the sewage outfalls as point source pollution. Therefore, the combination of the above two categories of phytoplankton community parameters could make the strongest indicating functions. Our study provided greater insight into indicating functions of phytoplankton community parameters in an ecological restored lake and enabled better managements in such artificial lakes.


Assuntos
Fitoplâncton , Qualidade da Água , Ecossistema , Lagos/química , Monitoramento Ambiental/métodos , Biomarcadores Ambientais , Esgotos , Estações do Ano , China
3.
FASEB J ; 34(1): 1412-1429, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914599

RESUMO

Accumulation of amyloid ß (Aß) peptide, inflammation, and oxidative stress contribute to Alzheimer's disease (AD) and trigger complex pathogenesis. The ketone body ß-hydroxybutyrate (BHBA) is an endogenous metabolic intermediate that protects against stroke and neurodegenerative diseases, but the underlying mechanisms are unclear. The present study aims to elucidate the protective effects of BHBA in the early stage of AD model and investigate the underlying molecular mechanisms. Three-and-half-month-old double-transgenic mice (5XFAD) overexpressing ß-amyloid precursor protein (APP) and presenilin-1 (PS1) were used as the AD model. The 5XFAD mice received 1.5 mmol/kg/d BHBA subcutaneously for 28 days. Morris water maze test, nest construction, and passive avoidance experiments were performed to assess the therapeutic effects on AD prevention in vivo, and brain pathology of 5XFAD mice including amyloid plaque deposition and microglia activation were assessed. Gene expression profiles in the cortexes of 5XFAD- and BHBA-treated 5XFAD mice were performed with high-throughput sequencing and bioinformatic analysis. Mouse HT22 cells were treated with 2 mM BHBA to explore its in vitro protective effects of BHBA on hippocampal neurons against Aß oligomer toxicity, ATP production, ROS generation, and mitochondrial aerobic respiratory function. APP, BACE1, and neprilysin (NEP) expression levels were evaluated in HT22 cells following treatment with BHBA by measuring the presence or absence of G protein-coupled receptor 109A (GPR109A). BHBA improved cognitive function of 5XFAD mice in Morris water maze test, nesting construction and passive avoidance experiments, and attenuated Aß accumulation and microglia overactivation in the brain. BHBA also enhanced mitochondrial respiratory function of hippocampal neurons and protected it from Aß toxicity. The enzymes, APP and NEP were regulated by BHBA via G-protein-coupled receptor 109A (GPR109A). Furthermore, RNA sequencing revealed that BHBA-regulated genes mainly annotated in aging, immune system, nervous system, and neurodegenerative diseases. Our data suggested that BHBA confers protection against the AD-like pathological events in the AD mouse model by targeting multiple aspects of AD and it may become a promising candidate for the prevention and treatment of AD.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia
4.
Front Immunol ; 11: 583652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488584

RESUMO

Several studies have reported an intricate link between the G protein-coupled receptor 109A (GPR109A) and intestinal health. Upon activation, induced by butyric acid and ß-hydroxybutyric acid, GPR109A regulates the expression of tight junction proteins, exerts anti-inflammatory effects, and maintains the integrity of the intestinal barrier. However, its function and the mechanism of action in combating the infection caused by exogenous pathogenic microorganisms remain unclear. This study established an animal model of infection by oral enterotoxigenic Escherichia coli (ETEC) gavage to examine the underlying mechanism(s) and protective effects of GPR109A on the intestinal tract. Experimental GPR109A-/-and GPR109A+/+ mice were orally administered with 1 × 109 colony-forming units (CFUs) of ETEC, and changes in body weight were then observed. The colonization and translocation of ETEC in the intestine were detected by the plate counting method. The expression of tight junction proteins and the levels of inflammatory factors and secretory IgA (SIgA) in the intestine were detected by quantitative real-time polymerase chain reaction (q-PCR), western blotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry. The results demonstrated that GPR109A-/-mice were more susceptible to ETEC infection, showing more severe inflammatory reactions and intestinal damage. Moreover, the secretion of IgA in the intestinal tract of GPR109A+/+ mice was significantly increased after ETEC infection, whereas the IgA levels in GPR109A-/-mice did not change significantly. We added 5 g/L sodium butyrate to the drinking water of all mice. The GPR109A+/+ mice were protected against ETEC infection and no effect was observed in GPR109A-/-mice. Similarly, sodium butyrate increased the SIgA content in the gut of the GPR109A+/+ mice and no effect was observed in GPR109A-/-mice. In conclusion, activated GPR109A is effective against the colonization and translocation of ETEC in the gut and maintains the integrity of the intestinal barrier, possibly by promoting the secretion of intestinal IgA.


Assuntos
Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Receptores Acoplados a Proteínas G/imunologia , Animais , Enteropatias/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA