Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(20)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39459790

RESUMO

Alkali-activated concrete (AAC), produced from industrial by-products like fly ash and slag, offers a promising alternative to traditional Portland cement concrete by significantly reducing carbon emissions. Yet, the inherent variability in AAC formulations presents a challenge for accurately predicting its compressive strength using conventional approaches. To address this, we leverage machine learning (ML) techniques, which enable more precise strength predictions based on a combination of material properties and cement mix design parameters. In this study, we curated an extensive dataset comprising 1756 unique AAC mixtures to support robust ML-based modeling. Four distinct input variable schemes were devised to identify the optimal predictor set, and a comparative analysis was performed to evaluate their effectiveness. After this, we investigated the performance of several popular ML algorithms, including random forest (RF), adaptive boosting (AdaBoost), gradient boosting regression trees (GBRTs), and extreme gradient boosting (XGBoost). Among these, the XGBoost model consistently outperformed its counterparts. To further enhance the predictive accuracy of the XGBoost model, we applied four state-of-the-art optimization techniques: the Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), beetle antennae search (BAS), and Bayesian optimization (BO). The optimized XGBoost model delivered superior performance, achieving a remarkable coefficient of determination (R2) of 0.99 on the training set and 0.94 across the entire dataset. Finally, we employed SHapely Additive exPlanations (SHAP) to imbue the optimized model with interpretability, enabling deeper insights into the complex relationships governing AAC formulations. Through the lens of ML, we highlight the benefits of the multi-faceted synergistic approach for AAC strength prediction, which combines careful input parameter selection, optimal hyperparameter tuning, and enhanced model interpretability. This integrated strategy improves both the robustness and scalability of the model, offering a clear and reliable prediction of AAC performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39322221

RESUMO

Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.

3.
J Fluoresc ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252217

RESUMO

A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10- 9 M, 4.64 × 10- 9 M, and 1.35 × 10- 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job's plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.

4.
J Med Chem ; 66(3): 1852-1872, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36715603

RESUMO

Exploring multi-targeting chemotherapeutants with advantages over single-targeting agents and drug combinations is of great significance in drug discovery. Herein, we employed phytogenic evodiamine (EVO) and conventional Pt(II) drugs to design and synthesize multi-target EVO-Pt(IV) anticancer prodrugs (4-14). Among them, compound 10 exhibited a 118-fold enhancement in the IC50 value compared to cisplatin and low toxicity to normal cells. Further studies proved that 10 significantly enhanced intracellular Pt accumulation and DNA damage, perturbed mitochondrial membrane potential, inhibited cell migration and invasion, upregulated reactive oxygen species levels, and induced apoptosis and autophagic cell death. Molecular docking assay revealed that 10 fits perfectly into the extracellular signal-regulated protein kinase (ERK)-1 pocket, which was verified to produce profound ERK suppression. Most strikingly, compound 10 exhibited superior in vivo antitumor efficiency and effectively attenuated systemic toxicity. Our results emphasize that functionalizing platinum drugs with the multi-target EVO could generate synergistically excellent anticancer activity with low toxicity and decreased resistance, which may represent a brand-new cancer therapy modality.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Cisplatino/farmacologia , MAP Quinases Reguladas por Sinal Extracelular , Apoptose , Dano ao DNA , Autofagia
5.
J Inorg Biochem ; 232: 111842, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35472743

RESUMO

Combination of immune- and chemo-therapy has become a new trend in cancer treatment. Food and Drug Administration (FDA)-approved immune-modulatory agent, thalidomide, can modulate the related proteins of upstream signaling pathway of programmed cell death-ligand 1 (PD-L1), including nuclear transcription factor κB (NF-κB), hypoxia inducible factor-1α (HIF-1α), epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), all acting as key antitumor target proteins. In this work, we conjugated thalidomide with oxidized cisplatin to construct multi-functional Pt(IV) prodrugs, named thaliplatins 4-6, to investigate the anti-tumor effect of immuno- and chemo-therapy. Among them, thaliplatin 6 exerted remarkable cytotoxicity against the tested cancer cell lines, showing 15-26 and 9-20 times higher IC50 values than those of single cisplatin or the combination of cisplatin + thalidomide, respectively. Moreover, thaliplatin 6 could rapidly accumulated into cells, markedly triggered DNA damage, and induced cell S phase arrest and apoptosis, as well as inhibited cell migration and invasion in breast carcinoma cell line (MCF-7). Fluorescent confocal and western blotting experiments proved that 6 significantly regulated NF-κB, EGFR, HIF-1α and phosphor-signal transducer and activator of transcription 3 (p-STAT3), and simultaneously inhibited PD-L1 expression to interrupt programmed cell death 1 (PD-1)/PD-L1 signaling pathway, suggesting a synergistic action of cisplatin and thalidomide. Most strikingly, in vivo tests indicated that 6 effectively decreased tumor growth with no observable systemic toxicity, being superior to the anticancer efficacy of cisplatin.


Assuntos
Pró-Fármacos , Fator de Transcrição STAT3 , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Cisplatino , Receptores ErbB/metabolismo , Imunomodulação , NF-kappa B/metabolismo , Pró-Fármacos/farmacologia , Fator de Transcrição STAT3/metabolismo , Talidomida/farmacologia
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120067, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146827

RESUMO

The metal cations, Al3+ and Mg2+, could affect human health and cell biological processes. Their fast and selective detection using one probe remains a challenge. A novel fluorescence probe, N'-((1-hydroxynaphthalen-2-yl)methylene)isoquinoline-3-carbohydrazide (NHMI), was developed for selectively monitoring Al3+ and Mg2+. The probe NHMI showed a distinctive "turn-on" fluorescence signal towards Al3+ and Mg2+ (cyan for Al3+ with 2556-folds enhancement and yellow for Mg2+ with 88-folds enhancement), which is quite distinct from other metal cations and allows for naked-eye detection. This interesting response was attributed to the influence of PET, ESIPT process and CHEF effect, when Al3+ or Mg2+ chelated with NHMI. Furthermore, the fluorescence titration experiments manifested that the detection limit of probe NHMI for Al3+/Mg2+ was as low as 1.20 × 10-8 M and 7.69 × 10-8 M, respectively. The formed complexes NHMI-Al3+ and NHMI-Mg2+ were analyzed by Job's plot, ESI-MS, 1H NMR and FT-IR. The coordination pockets and fluorescence mechanisms of two metal complexes were explored by density functional theory calculation. Moreover, NHMI showed low cytotoxicity and good cell permeability. Fluorescence bioimaging of Al3+/Mg2+ in MCF-7 cells with NHMI indicated its potential application in biological diagnostic analysis.


Assuntos
Alumínio , Corantes Fluorescentes , Humanos , Células MCF-7 , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Mater Chem B ; 8(36): 8346-8355, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32794530

RESUMO

Human serum albumin (HSA) is considered as a biomarker for the early diagnosis of renal disease, therefore identifying and detecting HSA in biological fluids (especially urine) with an easy method is of great importance. Herein, we report a novel hydrazide Schiff base fluorescent probe N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)pyrazine-2-carbohydrazide (NPC), which self-assembled into nanoparticles in aqueous solution. Based on disassembly-induced emission and the site-specific recognition mechanism, the binding of NPC with HSA resulted in a fluorescence "turn-on" response. Probe NPC exhibited superior selectivity and sensitivity toward HSA with a detection limit of 0.59 mg L-1 in PBS and 0.56 mg L-1 in the urine sample. The site-binding mechanism of NPC with HSA was explored by fluorescence quenching study, Job's plot analysis, HSA destruction, site marker displacement and molecular docking. Fluorescence imaging of HSA in MCF-7 cells was achieved by using a non-toxic NPC probe, suggesting that NPC could be applied to visualize the level of HSA in vivo. More importantly, further practical applications of probe NPC in human urine samples were achieved with satisfactory results by using a fluorometer or test paper, which could provide extensive application in clinical diagnosis.


Assuntos
Corantes Fluorescentes/química , Hidrazinas/química , Nefropatias/diagnóstico , Bases de Schiff/química , Albumina Sérica Humana/urina , Sítios de Ligação , Biomarcadores/metabolismo , Biomarcadores/urina , Corantes Fluorescentes/metabolismo , Humanos , Hidrazinas/metabolismo , Nefropatias/urina , Limite de Detecção , Células MCF-7 , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Ligação Proteica , Bases de Schiff/metabolismo , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118797, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799193

RESUMO

A new acylhydrazine-derived Schiff base fluorescence probe DMI based on "ON-OFF-ON" fluorescence strategy was presented in this paper. Probe DMI could detect Cu2+ selectively and sensitively with dramatic fluorescence quenching in CH3OH-PBS (v/v = 3:7) mixed solution. Once the complex DMI-Cu2+ interacted with S2-, 10.67-folds fluorescence increase was induced via a displacement mechanism under the same experimental conditions. The corresponding detection limits for Cu2+ and S2- were calculated to be 1.52 × 10-8 M and 1.79 × 10-8 M, respectively. The structures of DMI and DMI-Cu2+ were systematically characterized by Job's plot analysis, ESI-MS, IR, X-ray diffraction and density functional theory calculations. Furthermore, fluorescence imaging in MCF-7 cells and zebrafish demonstrated the probe DMI could act as a useful tool to monitor and track intracellular Cu2+ and S2-, which was encouraged by remarkable fluorescence performance and low cytotoxicity. Importantly, the complex DMI-Cu2+ could be applied to detect corrupt blood samples, which could estimate the time of death.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Cobre , Humanos , Bases de Schiff , Espectrometria de Fluorescência
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118754, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32814255

RESUMO

As a colorimetric and fluorescent turn-on sensor to Al3+, N'-(2-hydroxybenzylidene)isoquinoline-3-carbohydrazide (HL) has been easily synthesized. The fluorescence intensity increases by 273 times in the presence of Al3+ at 458 nm. Meanwhile, the experiment data indicate that the limit of detection for Al3+ is 1.11 × 10-9 M. Remarkably, the blue fluorescence signal of HL-Al3+ could be specially observed by the naked eye under UV light and is significantly different from those of other metal ions. Fluorescence switch based on the control of Al3+ and EDTA proved HL could act as a reversible chemosensor. According to ESI-MS result and the Job's plots, the 2:1 coordination complex formed by HL and Al3+ could be produced. Density functional theory calculations were performed to illustrate the structures of HL and complex. The cell imaging experiment indicates that HL can be applied for monitoring intracellular Al3+ levels in cells.


Assuntos
Corantes Fluorescentes , Bases de Schiff , Íons , Isoquinolinas , Espectrometria de Fluorescência
10.
J Med Chem ; 63(11): 6096-6106, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32401032

RESUMO

Multitargeted therapy could rectify various oncogenic pathways to block tumorigenesis and progression. The combination of endocrine-, immune-, and chemotherapy might exert a highly synergistic effect against certain tumors. Herein, a series of smart Pt(IV) prodrugs 3-6, named Melatplatin, were rationally designed not only to multitarget DNA, MT1, and estrogen receptor (ER) but also to activate immune response. Melatplatin, conjugating first-line chemotherapeutic Pt drugs with human endogenous melatonin (MT), significantly enhanced drug efficacy especially in ER high-expression (ER+) cells, among which 3 presented the most potent cytotoxicity toward ER+ MCF-7 with nanomolar IC50 values 100-fold lower than cisplatin. Melatplatin could bind well to melatonin receptor (MT1) according to molecular docking. Besides, 3 evidently increased intracellular accumulation and DNA damage, upregulated γH2AX and P53, and silenced NF-κB to induce massive apoptosis. Most strikingly, 3 effectively inhibited tumor growth and attenuated systemic toxicity compared to cisplatin in vivo, promoting lymphocyte proliferation in spleen to achieve immune modulation.


Assuntos
Antineoplásicos/química , Platina/química , Pró-Fármacos/química , Receptor MT1 de Melatonina/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Estrutura Terciária de Proteína , Receptor MT1 de Melatonina/química , Receptores de Estrogênio/química
11.
Phys Rev E ; 101(1-1): 012416, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069643

RESUMO

Diverse biological functions of biomembranes are made possible by their rich dynamic behaviors across multiple scales. While the potential coupling between the dynamics of differing scales may underlie the machineries regulating the biomembrane-involving processes, the mechanism and even the existence of this coupling remain an open question, despite the latter being taken for granted. Via inelastic neutron scattering, we examined dynamics across multiple scales for the lipid membranes whose dynamic behaviors were perturbed by configurational changes at two membrane regions. Surprisingly, the dynamic behavior of individual lipid molecules and their collective motions were not always coupled. This suggests that the expected causal relation between the dynamics of the differing hierarchical levels does not exist and that an apparent coupling can emerge by manipulating certain membrane configurations. The findings provide insight on biomembrane modeling and how cells might individually or concertedly control the multiscale membrane dynamics to regulate their functions.


Assuntos
Membrana Celular/metabolismo , Modelos Biológicos , Fluidez de Membrana , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
12.
J Biomol Struct Dyn ; 38(3): 733-743, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30806572

RESUMO

Three dinuclear lanthanide complexes, [Ln2(L)2(µ3-OAc)4(H2O)2]⋅2H2O (Ln = La (1), Eu (2) and Dy (3), HL = N'-(2-hydroxybenzylidene) nicotinohydrazide), have been synthesized and characterized by IR, elemental analysis and X-ray single-crystal diffraction. Crystallographic study revealed that the representative complex 1 displays a discrete dinuclear structure with a distorted tricapped trigonal prismatic geometry around La(III) ion. The interaction of complexes 1-3 with CT-DNA was investigated by absorption spectra, fluorescence quenching and viscosity, which reveals that the complexes bind to CT-DNA with a moderate intercalative mode. The complexes exhibited obvious DNA cleavage activities in the presence of H2O2. All complexes could bind to human serum albumin (HSA) with medium affinity through static mode; thus, HSA could effectively transport complexes. Furthermore, three complexes exhibited specific cytotoxicity to A549 cancer cells in micromole magnitude than other cancer cells tested and less toxicity than cisplatin for normal human cells HUVEC, in which massive cell apoptosis was induced by complexes through producing DNA damage and suppressing DNA synthesis.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , DNA/metabolismo , Hidrazinas/farmacologia , Elementos da Série dos Lantanídeos/síntese química , Elementos da Série dos Lantanídeos/farmacologia , Bases de Schiff/farmacologia , Albumina Sérica Humana/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Bovinos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Clivagem do DNA , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Concentração Inibidora 50 , Cinética , Elementos da Série dos Lantanídeos/química , Conformação Molecular , Ligação Proteica , Bases de Schiff/síntese química , Bases de Schiff/química , Análise Espectral , Termodinâmica , Viscosidade
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117763, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31718979

RESUMO

Identifying and detecting similar target cations through combining "turn on" and "turn off" fluorescence mechanism is effective and challenging. Now a new colorimetric and ON-OFF-ON fluorescent probe N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)-3-hydroxy-2-naphthohydrazide (L) was reported, which could detect Cu2+ and Co2+ in phosphate buffered CH3CH2OH-H2O solvent system. With the assistance of glutathione and pH adjustment, a unique ON-OFF-ON fluorescence detection strategy could be achieved for distinguishing Cu2+ and Co2+. The emission of probe could recover from the L-Cu2+ and L-Co2+ system by addition of GSH or adjusting pH value to 4, respectively, which is due to the abolishment of paramagnetic Cu2+/Co2+. Based on fluorescence titration experiments, the limit of detection was determined as 3.84 × 10-9 M and 4.55 × 10-9 M for Cu2+ and Co2+, respectively. Meanwhile, the detection limit reached 6.21 × 10-8 M for Cu2+ and 6.96 × 10-8 M for Co2+ according to absorbance signal output. Fast recognition of Cu2+/Co2+ can be achieved by obvious color changes from green to colorless under UV light, as well as from yellow to orange-red in room light. The binding mode of L toward Cu2+ and Co2+ have been systematically studied by Job's plot analysis, ESI-MS, IR and density functional theory calculations. Most strikingly, further practical applications of the probe L in fluorescence imaging were investigated in MCF-7 cells and zebrafish due to its low cytotoxicity and good optical properties, suggesting that L could serve as a fluorescent sensor for tracking Cu2+ and Co2+in vivo.


Assuntos
Cobalto/metabolismo , Cobre/metabolismo , Corantes Fluorescentes/química , Animais , Cátions Bivalentes/metabolismo , Colorimetria , Humanos , Células MCF-7 , Peixe-Zebra
14.
Analyst ; 144(13): 4024-4032, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31140476

RESUMO

A new dual functional turn-on chemosensor, 2,6-diformyl-4-methylphenol-di(isoquinolinyl-1-hydrazone) (HL), has been developed, which could highly selectively discriminate Mg2+ and Zn2+ in different solvent systems. The chemosensor HL exhibits rapid visual turn-on fluorescence enhancing recognition toward Mg2+/Zn2+, which is not interfered by other cations, especially for respective congeners Ca2+/Cd2+. The remarkable fluorescence enhancement (71-fold or 11-fold) was observed after adding Mg2+ in acetonitrile or Zn2+ in DMF-H2O solvent systems. Additionally such a solvent medium-controlled platform could achieve the quantitative determination of Mg2+ and Zn2+ quantitation with low detection limits of 2.97 × 10-8 M and 3.07 × 10-7 M, respectively. Furthermore, the turn-on fluorescence sensing mechanism is also investigated by 1H NMR, FT-IR and ESI-MS spectroscopy. Density functional theory (DFT) calculations derive optimized geometries of HL and its complexes. Notably, non-toxic HL also can be successfully applied as a visual probe for the practical determination of Mg2+/Zn2+ in MCF-7 cells, Zebrafish larvae, syrup and water samples, which might provide extensive application in biology and medicine fields.


Assuntos
Corantes Fluorescentes/química , Hidrazonas/química , Isoquinolinas/química , Magnésio/análise , Zinco/análise , Animais , Teoria da Densidade Funcional , Água Potável/análise , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Hidrazonas/síntese química , Hidrazonas/toxicidade , Isoquinolinas/síntese química , Isoquinolinas/toxicidade , Lagos/análise , Limite de Detecção , Células MCF-7 , Modelos Químicos , Solventes/química , Espectrometria de Fluorescência/métodos , Peixe-Zebra
15.
Artigo em Inglês | MEDLINE | ID: mdl-30195183

RESUMO

Developing high performance fluorescent chemo-sensors for in vitro and in vivo Al3+ detection is highly desirable, because Al3+ accumulation has been involved to various diseases. Herein, we report a highly selective and sensitive Schiff base fluorescent probe, H3L, based on 2-hydroxynaphthalene, which can recognize aluminum ions and exhibit an "off-on" mode with high selectivity in methanol solutions. The detection limit of the probe for Al3+ is as low as 10-7 M which was determined by fluorescent titration. The high selectivity and high sensitivity of H3L for Al3+ are attributed to the inhibition of ESIPT. Additionally, the distribution of intracellular Al3+ ions could be observed under confocal fluorescence microscopy. Moreover, we also applied H3L for in vivo detection of Al3+ ions in living zebrafish larvae.


Assuntos
Alumínio/análise , Corantes Fluorescentes/química , Naftóis/química , Imagem Óptica/métodos , Bases de Schiff/química , Animais , Cátions/análise , Feminino , Fluorescência , Células HeLa , Humanos , Masculino , Microscopia de Fluorescência/métodos , Modelos Moleculares , Espectrometria de Fluorescência/métodos , Peixe-Zebra
16.
Eur J Med Chem ; 157: 188-197, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30096652

RESUMO

Thiazolidinone derivatives have been previously shown significant anti-cancer activities. Two amino-thiazolidinone complexes, [Pt(HTone)Cl] (1) and [Cu(HTone)Cl] (3) (HTone = (Z)-2-((E)-(1-(pyridin-2-yl)ethylidene)hydrazono)thiazolidin-4-one) and one ethyl-modified [Pt(ETone)Cl2] (2) (ETone = (Z)-3-ethyl-2-((E)-(1-(pyridin-2-yl)ethylidene) hydrazono)thiazolidin-4-one)], were designed and synthesized in order to explore novel metal-based antitumor agents. MTT assay indicated that 1 and 3 were markedly cytotoxic to MCF-7, HepG-2 and NCI-H460 tumor cells, superior to both cisplatin and the HTone ligand. Massive dead cells were observed as early as 6 h when treated with 1, indicating rapid action of 1 as compared to that of other compounds. More interestingly, Hoechst 33342 staining and flow cytometry analysis illustrated that only complex 1 could induce obvious cell apoptosis within 12 h, which was associated with the high-expression of Bax and cleavage of caspase-3 from 35 kDa to 17 kDa. By means of ICP-MS assay, we found complex 1 could largely accumulate in tumor cells in a short time. Additionally, complex 1 showed no cross resistance against the cisplatin-resistant cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Tiazolidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Relação Estrutura-Atividade , Tiazolidinas/química , Células Tumorais Cultivadas
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 195: 157-164, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414573

RESUMO

A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL1) has been conveniently synthesized and characterized. HL1 exhibited a highly selective and pronounced enhancement for Al3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al3+ with 41 fold intensity enhancement at 545 nm. HL1 displays good linear relationship with Al3+ in the low concentration and the limit of detection is 8.08 × 10-8 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL1 could be used to detect Al3+ ions in real sample by fluorescence spectrometry and Al3+ ions in cells by bioimaging.

18.
Dalton Trans ; 45(22): 9073-87, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27163172

RESUMO

Four novel mononuclear Schiff base copper(ii) complexes, namely, [Cu(L)(OAc)]·H2O (), [Cu(HL)(C2O4)(EtOH)]·EtOH (), [Cu(L)(Bza)] () and [Cu(L)(Sal)] () (HL = 1-(((2-((2-hydroxypropyl)amino)ethyl)imino)methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid), were synthesized and characterized by X-ray crystallography, elemental analysis and infrared spectroscopy. Single-crystal diffraction analysis revealed that all the complexes were mononuclear molecules, in which the Schiff base ligand exhibited different coordination modes and conformations. The N-HO and O-HO inter- and intramolecular hydrogen bonding interactions linked these molecules into multidimensional networks. Their interactions with calf thymus DNA (CT-DNA) were investigated by UV-visible and fluorescence spectrometry, as well as by viscosity measurements. The magnitude of the Kapp values of the four complexes was 10(5), indicating a moderate intercalative binding mode between the complexes and DNA. Electrophoresis results showed that all these complexes induced double strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. In addition, the fluorescence spectrum of human serum albumin (HSA) with the complexes suggested that the quenching mechanism of HSA by the complexes was a static process. Moreover, the antiproliferative activity of the four complexes against HeLa (human cervical carcinoma) and HepG-2 (human liver hepatocellular carcinoma) cells evaluated by colorimetric cell proliferation assay and clonogenic assay revealed that all four complexes had improved cytotoxicity against cancer cells. Inspiringly, complex , with salicylic acid as the auxiliary ligand, displayed a stronger anticancer activity, suggesting that a synergistic effect of the Schiff base complex and the nonsteroidal anti-inflammatory drug may be involved in the cell killing process. The biological features of mixed-ligand copper(ii) Schiff base complexes and how acetic auxiliary ligands manipulate these features are also discussed.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Clivagem do DNA , DNA/efeitos dos fármacos , Substâncias Intercalantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , DNA/química , Células HeLa , Células Hep G2 , Humanos , Ligação de Hidrogênio , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Conformação Molecular , Ligação Proteica/efeitos dos fármacos , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho
19.
Dalton Trans ; 45(19): 8036-49, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27071545

RESUMO

Four novel copper(ii) complexes [Cu(II)(Bp4mT)(µ-Cl)]2 (), [Cu(II)(µ-Bp4mT)Br]2 (), [Cu(II)(HBpT)Cl] (), and [Cu(II)(HBpT)Br] () (Bp4mT = 2-benzoylpyridine-4-methylthiosemicarbazone, HBpT = 2-benzoylpyridine thiosemicarbazone), were synthesized and characterized using single-crystal X-ray diffraction, elemental analysis, infrared, and ultraviolet-visible spectroscopy. X-ray analysis revealed that complexes and based on the Bp4mT ligand presented dimeric structures in which the Cu(ii) ions were located in a five-coordinated distorted square-pyramidal geometry, whereas both and complexes were mononuclear with the Cu(ii) ions exhibiting a tetracoordinated square planar configuration. Their interactions with calf thymus DNA (CT-DNA) were investigated using viscosity measurements and fluorescence spectroscopy. Multispectroscopic evidence has shown interactions between these complexes and human serum albumin (HSA). All these complexes have exhibited efficient oxidative cleavage of supercoiled DNA in the presence of hydrogen peroxide, presumably via an oxidative mechanism. Furthermore, in vitro cytotoxicity studies of against human liver hepatocellular carcinoma cells (HepG-2), human large cell lung carcinoma cells (NCI-H460), and human cervical carcinoma cells (HeLa) indicated their promising antitumor activity with quite low IC50 values in the range of 0.08-1.98 µM, which are 83 times lower than those of cisplatin. The mechanistic studies revealed that four complexes, which induced early apoptosis, were involved in reactive oxygen species generation and DNA cleavage for their antitumor activities.


Assuntos
Antineoplásicos/química , Quelantes/química , Cobre/química , Clivagem do DNA , Animais , Apoptose , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA , Dano ao DNA , Humanos , Espécies Reativas de Oxigênio
20.
J Inorg Biochem ; 146: 52-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771239

RESUMO

Three novel structurally associated copper(II) complexes [Cu(II)(SalCl-Gly)(H2O)2] (1), [Cu(II)(SalCl-Ala)(H2O)] (2) and [Cu(II)(SalCl-Gly)(bipy)]·0.5H2O (3) (SalCl-Gly=5-chloro-2-hydroxybenzylidene-glycine, SalCl-Ala=5-chloro-2-hydroxybenzylidene-alanine, bipy=2,2'-bipyridine) have been synthesized and characterized by X-ray crystallography, elemental analysis, IR and fluorescence spectroscopy. Single-crystal diffraction reveals that complex 1 is an infinite 1D zigzag chain in which SalCl-Gly serves as both a chelating and a bridging ligand, while complexes 2 and 3 are mononuclear. Cu(II) ions in complexes 1-3 exhibit distorted quasi-hexacoordinated octahedral, tetracoordinated square planar, and pentacoordinated square pyramid geometry, respectively. Their interactions with calf thymus DNA (CT-DNA) have been investigated by viscosity measurements and fluorescence spectroscopy. The apparent binding constant (Kapp) values for 1-3 are 1.02×10(5), 0.98×10(5) and 1.57×10(5)M(-1), respectively. All complexes displayed efficient oxidative cleavage of supercoiled DNA in the presence of H2O2. Complex 2, whose ligand can be regarded as a methyl-modification of SalCl-Gly of 1, showed a reduced DNA cleavage activity and a little-changed DNA-binding ability compared with 1. While attaching a 2,2'-bipyridine group to 1, the resulting complex 3 was conferred an enhanced intercalation into DNA. Moreover, cytotoxicity studies of three complexes against HepG-2 (human liver hepatocellular carcinoma) and NCI-H460 (human large-cell lung carcinoma) cells indicated that, thereto, complex 3 possessed the highest inhibition on viability of tested cells.


Assuntos
Aldeídos/química , Aminoácidos/química , Cobre/química , Compostos Organometálicos/síntese química , Bases de Schiff/química , DNA/química , Células Hep G2 , Humanos , Compostos Organometálicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA