Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Clin Cases ; 10(35): 12909-12919, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36569022

RESUMO

BACKGROUND: Increased lipoprotein (a) [lp (a)] has proinflammatory effects, which increase the risk of coronary artery disease. However, the association between lp (a) variability and follow-up C-reactive protein (CRP) level in patients undergoing percutaneous coronary intervention (PCI) has not been investigated. AIM: To explore the association between lp (a) variability and mean CRP levels within the 1st year post-PCI. METHODS: Results of lp (a) and CRP measurements from at least three follow-up visits of patients who had received PCI were retrospectively analyzed. Standard deviation (SD), coefficient of variation (CV), and variability independent of the mean (VIM) are presented for the variability for lp (a) and linear regression analysis was conducted to correlate lp (a) variability and mean follow-up CRP level. The relationship of lp (a) variability and inflammation status was analyzed by restricted cubic spline analysis. Finally, exploratory analysis was performed to test the consistency of results in different populations. RESULTS: A total of 2712 patients were enrolled. Patients with higher variability of lp (a) had a higher level of mean follow-up CRP (P < 0.001). lp (a) variability was positively correlated with the mean follow-up CRP (SD: ß = 0.023, P < 0.001; CV: ß = 0.929, P < 0.001; VIM: ß = 1.648, P < 0.001) by multivariable linear regression analysis. Exploratory analysis showed that the positive association remained consistent in most subpopulations. CONCLUSION: Lp (a) variability correlated with mean follow-up CRP level and high variability could be considered an independent risk factor for increased post-PCI CRP level.

2.
Front Pharmacol ; 11: 562084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123008

RESUMO

The aim of this study was to assess the underlying impact of Tetramethylpyrazine (TMP), which is the main activity compound of Ligusticum chuanxiong Hort, on the blood-brain barrier, inflammatory and nitrous oxide systems in a rat model of lipopolysaccharide (LPS)-induced sepsis. The SD rats were divided into control group, LPS treatment group, and LPS + TMP treatment group. TMP administered by tail vein injection. The mortality of experimental rats was recorded during the experiment. Rats were sacrificed after 14 days. Peripheral blood was collected and the expression levels of inflammatory factors TNF-α, IL-1ß, and IL-6 were detected by ELISA. The integrity of blood-brain barrier was detected by sodium fluorescein staining. Lung and brain tissues were taken to detect the infiltration of immune cells. Immunohistochemistry was performed to detect the expression of tight junctions related proteins and oxidative stress-related proteins. The results showed that TMP treatment for 14 days significantly decreased the weight loss and increased the survival rate of the septic rats significantly. TMP decreased the infiltration of inflammatory cells and alleviated the sepsis-induced damage in both the lung and brain tissues. The inflammatory cytokines TNF-α, IL-1ß, and IL-6, were significantly decreased post-TMP treatment. Histopathological analysis with sodium fluorescein staining density showed that TMP had a protective effect on the basal lamina and cerebral cortex. Also, TMP significantly increased expression of the tight junction-related proteins claudin-5 and occludin in the brain tissue and increased the expression of the ZO-1, Occludin, and Claudin-5 genes, indicating alleviated the degree of blood-brain barrier destruction. Furthermore, immunohistochemistry (IHC) and immunoblotting confirmed that TMP could inhibit the indicators of the nitrous oxide system, iNOS and eNOS; in addition, TMP significantly decreased the levels of MDA and NO. The findings showed that TMP treatment during sepsis was associated with the protection of the blood-brain barrier and the suppression of inflammatory reactions and the nitrous oxide system. This study reveals a promising protective role of TMP in septic encephalopathy and may suggest a therapeutic approach for fighting the deadly disease of sepsis in the clinic.

3.
Math Biosci Eng ; 17(4): 3203-3223, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32987525

RESUMO

The recognition and analysis of tables on printed document images is a popular research field of the pattern recognition and image processing. Existing table recognition methods usually require high degree of regularity, and the robustness still needs significant improvement. This paper focuses on a robust table recognition system that mainly consists of three parts: Image preprocessing, cell location based on contour mutual exclusion, and recognition of printed Chinese characters based on deep learning network. A table recognition app has been developed based on these proposed algorithms, which can transform the captured images to editable text in real time. The effectiveness of the table recognition app has been verified by testing a dataset of 105 images. The corresponding test results show that it could well identify high-quality tables, and the recognition rate of low-quality tables with distortion and blur reaches 81%, which is considerably higher than those of the existing methods. The work in this paper could give insights into the application of the table recognition and analysis algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA