Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 190: 108832, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936066

RESUMO

Cigarette smoke (CS), an indoor environmental pollutant, is a prominent risk factor for emphysema, which is a pathological feature of chronic obstructive pulmonary disease (COPD). Emerging function of circRNAs in immune responses and disease progression shed new light to explore the pathogenesis of emphysema. In this research, we demonstrated, by single-cell RNA sequencing (scRNAseq), that the ratio of M2 macrophages were increased in lung tissues of humans and mice with smoking-related emphysema. Further, our data showed that circADAMTS6 was associated with cigarette smoke extract (CSE)-induced M2 macrophage polarization. Mechanistically, in macrophages, circADAMTS6 stabilized CAMK2A mRNA via forming a circADAMTS6/IGF2BP2/CAMK2A RNA-protein ternary complex to activate CREB, which drives M2 macrophage polarization and leads to emphysema. In addition, in macrophages of mouse lung tissues, downregulation of circADAMTS6 reversed M2 macrophage polarization, the proteinase/anti-proteinase imbalance, and the elastin degradation, which protecting against CS-induced emphysema. Moreover, for macrophages and in a model with co-cultured lung organoids, the target of circADAMTS6 restored the growth of lung organoids compared to CSE-treated macrophages. Our results also demonstrated that, for smokers and COPD smokers, elevation of circADAMTS6 negatively correlated with lung function. Overall, this study reveals a novel mechanism for circADAMTS6-driven M2 macrophage polarization in smoking-related emphysema and postulates that circADAMTS6 could serve as a diagnostic and therapeutic marker for smoking-related emphysema.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Macrófagos , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Enfisema , Pulmão/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar/patologia , Enfisema Pulmonar/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fumar/efeitos adversos
2.
Chem Biol Interact ; 396: 111029, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703806

RESUMO

Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.


Assuntos
Amônia , Arsenitos , Carbamoil-Fosfato Sintase (Amônia) , Colágeno , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Ureia , Animais , Arsenitos/toxicidade , Amônia/metabolismo , Colágeno/metabolismo , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Ureia/metabolismo , Regulação para Cima/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Compostos de Sódio
3.
Toxicol Lett ; 322: 12-19, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899212

RESUMO

Benzene exposure is a risk factor of acute myeloid leukemia (AML), during such carcinogenesis long non-coding RNAs (lncRNAs) are important epigenetic regulators. HOTAIRM1 (HOXA transcript antisense RNA, myeloid-specific 1) plays an indispensable role in the development of AML. Hydroquinone (HQ) is one major metabolite of benzene and its ideal replacement in toxicology research. But the influence of benzene or HQ on HOTAIRM1 expression in AML associated pathway is still unclear. In the TK6 cells with short-term exposure to HQ (HQ-ST cells) or long term HQ exposure induced malignant transformed TK6 cells (HQ-MT cells), the relationship between DNMT3b and HOTAIRM1 was explored. Comparing to counterparts, HOTAIRM1 expression was increased firstly and then decreased in HQ-ST cells, and definitely decreased in HQ-MT cells; while the expression change tendency of DNMT3b was in contrast to that of HOTAIRM1. Moreover, the average HOTAIRM1 expression of 17 paired workers being exposed to benzene within 1.5 years was increased, but that of the remaining 92 paired workers with longer exposure time was decreased. Furthermore, in 5-AzaC (DNA methyltransferase inhibitor) or TSA (histone deacetylation inhibitor) treated HQ-MT cells, the expression of HOTAIRM1 was restored by reduced DNA promoter methylation levels. HQ-MT cells with DNMT3b knockout by CRISPR/Cas9 displayed the promoter hypomethylation and the increase of HOTAIRM1, also confirmed in benzene exposure workers. These suggest that long term exposure to HQ or benzene might induce the increase of DNMT3b expression and the promoter hypermethylation to silence the expression of HOTAIRM1, a possible tumor-suppressor in the AML associated carcinogenesis pathway.


Assuntos
Benzeno/efeitos adversos , DNA (Citosina-5-)-Metiltransferases/biossíntese , Metilação de DNA/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Hidroquinonas/toxicidade , Leucemia Mieloide Aguda/induzido quimicamente , MicroRNAs/metabolismo , Doenças Profissionais/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Estudos de Casos e Controles , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , Indução Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Doenças Profissionais/enzimologia , Doenças Profissionais/genética , Regiões Promotoras Genéticas , Medição de Risco , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA