Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301691, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372003

RESUMO

Water electrolysis is considered the cleanest method for hydrogen production. However, the widespread popularization of water splitting is limited by the high cost and scarce resources of efficient platinum group metals. Hence, it is imperative to develop an economical and high-performance electrocatalyst to improve the efficiency of hydrogen evolution reaction (HER). In this study, a hierarchical porous sandwich structure is fabricated through dealloying FeCoNiCuAl2 Mn high-entropy alloy (HEA). This free-standing electrocatalyst shows outstanding HER performance with a very small overpotential of 9.7 mV at 10 mA cm-2 and a low Tafel slope of 56.9 mV dec-1 in 1 M KOH solution, outperforming commercial Pt/C. Furthermore, this electrocatalytic system recorded excellent reaction stability over 100 h with a constant current density of 100 mA cm-2 . The enhanced electrochemical activity in high-entropy alloys results from the cocktail effect, which is detected by density functional theory (DFT) calculation. Additionally, micron- and nano-sized pores formed during etching boost mass transfer, ensuring sustained electrocatalyst performance even at high current densities. This work provides a new insight for development in the commercial electrocatalysts for water splitting.

2.
Altern Ther Health Med ; 29(4): 146-151, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933246

RESUMO

Context: KOA characterized by recurrent joint pain and progressive joint dysfunction. Is the present clinical common chronic progressive degenerative osteoarthropathy, how long the disease is difficult to cure and easy to relapse. Exploring new therapeutic approaches and mechanisms is important for the treatment of KOA. One of the main applications for sodium hyaluronate (SH) in the medical field is treatment of osteoarthritis. However, the effects of SH alone in the treatment of KOA are limited. Hydroxysafflor yellow A (HSYA) may have therapeutic effects for KOA. Objective: The study intended to investigate the therapeutic effects and possible mechanisms of action HSYA+SH for cartilage tissue of rabbits with KOA and to provide a theoretical basis for the treatment of KOA. Design: The research team performed an animal study. Setting: The study that took place at Liaoning Jijia Biotechnology, Shenyang, Liaoning, China. Animals: The animals were 30 healthy, adult, New Zealand white rabbits, weighing 2-3 kg. Intervention: The research team randomly divided the rabbits into three groups, with 10 rabbits in each group: (1) a control group, for which the research team didn't induce KOA and provided no treatment; (2) the HSYA+SH group, the intervention group, for which the research team induced KOA and injected the rabbits with the HSYA+SH treatment; and (3) the KOA group, for which the research team induced KOA and injected the rabbits with saline. Outcome Measures: The research team: (1) observed the morphological changes in the cartilage tissue using hematoxylin-eosin (HE) staining; (2) measured levels of serum inflammatory factors, including tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), interferon gamma (IFN-γ), IL-6, and IL-17 using an enzyme-linked immunosorbent assay (ELISA); (3) measured cartilage-cell apoptosis using "terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling" (TUNEL); and (4) used Western Blot to detect the expression of proteins related to the "neurogenic locus notch homolog protein 1" (Notch1) signaling pathway. Results: Compared with the control group, morphological changes had occurred to the cartilage tissue in the KOA group. Compared with the control group, that group's level of apoptosis was higher, the levels of serum inflammatory factors were significantly higher (P < .05), and the protein expression related to the Notch1 signaling pathway was also significantly higher (P < .05). The morphology of the cartilage tissue in the HSYA+SH was better than that of the KOA group but not as good as that of the control group. Compared with the KOA group, the HSYA+SH group's level of apoptosis was lower, the levels of serum inflammatory factors were significantly lower (P < .05), and the protein expression related to the Notch1 signaling pathway was also significantly lower (P < .05). Conclusions: HSYA+SH can reduce the cellular apoptosis in the cartilage tissue of rabbits with KOA, downregulate the levels of inflammatory factors, and protect against KOA-induced cartilage tissue injury, and the mechanism may be related to the regulation of the Notch1 signaling pathway.


Assuntos
Osteoartrite do Joelho , Coelhos , Animais , Osteoartrite do Joelho/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Quinonas/farmacologia , Quinonas/uso terapêutico , Inflamação/tratamento farmacológico
3.
ACS Appl Mater Interfaces ; 9(10): 8737-8741, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28231428

RESUMO

Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10-3 S cm-1) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li+. The LiFePO4/PECA-GPE/Li and LiNi1.5Mn0.5O4/PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA