Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Clin J Am Soc Nephrol ; (0)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728096

RESUMO

BACKGROUND: Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. This study aimed at establishing a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. METHODS: In this retrospective cohort study of 2,056 IgA nephropathy patients at 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets while 8797 windows in 18 kidney centers were assigned to an independently test set. Interpretable Multi-Variable Long Short-Term Memory (IMV-LSTM), a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using Kaplan-Meier analysis and the C statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. RESULTS: The model achieved a higher C statistic (0.93; 95% CI, 0.92-0.95) on the test set than the XGBoost prediction model that we developed in a previous study using only baseline information (C statistic, 0.84; 95% CI, 0.80-0.88). Kaplan-Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. CONCLUSIONS: In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcome.

2.
Microbiome ; 12(1): 70, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581016

RESUMO

BACKGROUND: Gut microbiota is significantly influenced by altitude. However, the dynamics of gut microbiota in relation to altitude remains undisclosed. METHODS: In this study, we investigated the microbiome profile of 610 healthy young men from three different places in China, grouped by altitude, duration of residence, and ethnicity. We conducted widely targeted metabolomic profiling and clinical testing to explore metabolic characteristics. RESULTS: Our findings revealed that as the Han individuals migrated from low altitude to high latitude, the gut microbiota gradually converged towards that of the Tibetan populations but reversed upon returning to lower altitude. Across different cohorts, we identified 51 species specifically enriched during acclimatization and 57 species enriched during deacclimatization to high altitude. Notably, Prevotella copri was found to be the most enriched taxon in both Tibetan and Han populations after ascending to high altitude. Furthermore, significant variations in host plasma metabolome and clinical indices at high altitude could be largely explained by changes in gut microbiota composition. Similar to Tibetans, 41 plasma metabolites, such as lactic acid, sphingosine-1-phosphate, taurine, and inositol, were significantly elevated in Han populations after ascending to high altitude. Germ-free animal experiments demonstrated that certain species, such as Escherichia coli and Klebsiella pneumoniae, which exhibited altitude-dependent variations in human populations, might play crucial roles in host purine metabolism. CONCLUSIONS: This study provides insights into the dynamics of gut microbiota and host plasma metabolome with respect to altitude changes, indicating that their dynamics may have implications for host health at high altitude and contribute to host adaptation. Video Abstract.


Assuntos
População do Leste Asiático , Microbioma Gastrointestinal , Animais , Masculino , Humanos , Microbioma Gastrointestinal/genética , Altitude , Multiômica , Metaboloma
3.
J Transl Med ; 22(1): 397, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684996

RESUMO

BACKGROUND: Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS: A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS: Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION: Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.


Assuntos
Inteligência Artificial , Nefropatias Diabéticas , Glomérulos Renais , Humanos , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/classificação , Glomérulos Renais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Redes Neurais de Computação
4.
Ophthalmic Res ; 67(1): 211-220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38484716

RESUMO

INTRODUCTION: This study aimed to compare retinal vascular parameters and density in patients with moyamoya disease using the optical coherence tomography angiography. METHODS: This clinical trial totally enrolls 78 eyes from 39 participants, and all these patients with moyamoya disease (N = 13) are set as experimental group and participants with health who matched with age and gender are considered as the control group (N = 26). Then all these participants receive optical coherence tomography angiography detection. Participants' general data are collected and analyzed. Skeleton density (SD) value, vessel density (VD) value, fractal dimension (FD) value, vessel diameter index (VDI) value, foveal avascular zone (FAZ) value are analyzed. RESULTS: A total of 39 participants are included in this study. The SD value in the experimental group was significantly lower than that in control group (0.175 [0.166, 0.181] vs. 0.184 [0.175, 0.188], p = 0.017). Similarly, the VD value in the experimental group was significantly lower than that in the control group (0.333 [0.320, 0.350] vs. 0.354 [0.337, 0.364], p = 0.024). Additionally, the FD value in the experimental group was significantly lower than that in the control group (2.088 [2.083, 2.094] vs. 2.096 [2.090, 2.101], p = 0.022). As for the VDI and FAZ, VDI and FAZ values in the experimental group were lower than those in the control group, there was no significant difference in VDI and FAZ values between the two groups. CONCLUSIONS: Our study, using non-invasive and rapid OCTA imaging, confirmed decreased retinal vascular parameters and density in patients with moyamoya disease.


Assuntos
Angiofluoresceinografia , Fundo de Olho , Doença de Moyamoya , Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/fisiopatologia , Doença de Moyamoya/diagnóstico por imagem , Feminino , Masculino , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Angiofluoresceinografia/métodos , Adulto , Pessoa de Meia-Idade , Acuidade Visual , Adulto Jovem , Adolescente , Seguimentos
5.
Ren Fail ; 46(1): 2322043, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38425049

RESUMO

BACKGROUND: The analytical renal pathology system (ARPS) based on convolutional neural networks has been used successfully in native IgA nephropathy (IgAN) patients. Considering the similarity of pathologic features, we aim to evaluate the performance of the ARPS in allograft IgAN patients and broaden its implementation. METHODS: Biopsy-proven allograft IgAN patients from two different centers were enrolled for internal and external validation. We implemented the ARPS to identify glomerular lesions and intrinsic glomerular cells, and then evaluated its performance. Consistency between the ARPS and pathologists was assessed using intraclass correlation coefficients. The association of digital pathological features with clinical and pathological data was measured. Kaplan-Meier survival curve and cox proportional hazards model were applied to investigate prognosis prediction. RESULTS: A total of 56 biopsy-proven allograft IgAN patients from the internal center and 17 biopsy-proven allograft IgAN patients from the external center were enrolled in this study. The ARPS was successfully applied to identify the glomerular lesions (F1-score, 0.696-0.959) and quantify intrinsic glomerular cells (F1-score, 0.888-0.968) in allograft IgAN patients rapidly and precisely. Furthermore, the mesangial hypercellularity score was positively correlated with all mesangial metrics provided by ARPS [Spearman's correlation coefficient (r), 0.439-0.472, and all p values < 0.001]. Besides, a higher allograft survival was noticed among patients in the high-level groups of the maximum and ratio of endothelial cells, as well as the maximum and density of podocytes. CONCLUSION: We propose that the ARPS could be implemented in future clinical practice with outstanding capability.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/cirurgia , Glomerulonefrite por IGA/patologia , Células Endoteliais/patologia , Glomérulos Renais/patologia , Transplante Homólogo , Prognóstico , Aloenxertos/patologia , Estudos Retrospectivos
6.
Thorac Cancer ; 15(7): 519-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273667

RESUMO

BACKGROUND: Several studies have proposed grading systems for risk stratification of early-stage lung adenocarcinoma based on histological patterns. However, the reproducibility of these systems is poor in clinical practice, indicating the need to develop a new grading system which is easy to apply and has high accuracy in prognostic stratification of patients. METHODS: Patients with stage I invasive nonmucinous lung adenocarcinoma were retrospectively collected from pathology archives between 2009 and 2016. The patients were divided into a training and validation set at a 6:4 ratio. Histological features associated with patient outcomes (overall survival [OS] and progression-free survival [PFS]) identified in the training set were used to construct a new grading system. The newly proposed system was validated using the validation set. Survival differences between subgroups were assessed using the log-rank test. The prognostic performance of the novel grading system was compared with two previously proposed systems using the concordance index. RESULTS: A total of 539 patients were included in this study. Using a multioutcome decision tree model, four pathological factors, including the presence of tumor spread through air space (STAS) and the percentage of lepidic, micropapillary and solid subtype components, were selected for the proposed grading system. Patients were accordingly classified into three groups: low, medium, and high risk. The high-risk group showed a 5-year OS of 52.4% compared to 89.9% and 97.5% in the medium and low-risk groups, respectively. The 5-year PFS of patients in the high-risk group was 38.1% compared to 61.7% and 90.9% in the medium and low-risk groups, respectively. Similar results were observed in the subgroup analysis. Additionally, our proposed grading system provided superior prognostic stratification compared to the other two systems with a higher concordance index. CONCLUSION: The newly proposed grading system based on four pathological factors (presence of STAS, and percentage of lepidic, micropapillary, and solid subtypes) exhibits high accuracy and good reproducibility in the prognostic stratification of stage I lung adenocarcinoma patients.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Adenocarcinoma/patologia , Estudos Retrospectivos , Reprodutibilidade dos Testes , Estadiamento de Neoplasias , Adenocarcinoma de Pulmão/patologia , Prognóstico
7.
BMC Geriatr ; 24(1): 28, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184539

RESUMO

BACKGROUND: The current literature shows a strong relationship between retinal neuronal and vascular alterations in dementia. The purpose of the study was to use NFN+ deep learning models to analyze retinal vessel characteristics for cognitive impairment (CI) recognition. METHODS: We included 908 participants from a community-based cohort followed for over 15 years (the prospective KaiLuan Study) who underwent brain magnetic resonance imaging (MRI) and fundus photography between 2021 and 2022. The cohort consisted of both cognitively healthy individuals (N = 417) and those with cognitive impairment (N = 491). We employed the NFN+ deep learning framework for retinal vessel segmentation and measurement. Associations between Retinal microvascular parameters (RMPs: central retinal arteriolar / venular equivalents, arteriole to venular ratio, fractal dimension) and CI were assessed by Pearson correlation. P < 0.05 was considered statistically significant. The correlation between the CI and RMPs were explored, then the correlation coefficients between CI and RMPs were analyzed. Random Forest nonlinear classification model was used to predict whether one having cognitive decline or not. The assessment criterion was the AUC value derived from the working characteristic curve. RESULTS: The fractal dimension (FD) and global vein width were significantly correlated with the CI (P < 0.05). Age (0.193), BMI (0.154), global vein width (0.106), retinal vessel FD (0.099), and CRAE (0.098) were the variables in this model that were ranked in order of feature importance. The AUC values of the model were 0.799. CONCLUSIONS: Establishment of a predictive model based on the extraction of vascular features from fundus images has a high recognizability and predictive power for cognitive function and can be used as a screening method for CI.


Assuntos
Disfunção Cognitiva , Aprendizado Profundo , Humanos , Estudos Prospectivos , Disfunção Cognitiva/diagnóstico por imagem , Retina , Vasos Retinianos/diagnóstico por imagem , Biomarcadores
8.
Quant Imaging Med Surg ; 14(1): 932-943, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223087

RESUMO

Background: As the retinal microvasculature shares similarities with the cerebral microvasculature, numerous studies have shown that retinal vascular is associated with cognitive decline. In addition, several population-based studies have confirmed the association between retinal vascular and cerebral small vessel disease (CSVD) burden. However, the association of retinal vascular with CSVD burden as well as cognitive function has not been explored simultaneously. This study investigated the relations of retinal microvascular parameters (RMPs) with CSVD burden and cognitive function. Methods: We conducted a cross-sectional study of participants in the KaiLuan study. Data were collected from subjects aged ≥18 years old who could complete retinal photography and brain magnetic resonance imaging (MRI) between December 2020 to October 2021 in the Kailuan community of Tangshan. RMPs were evaluated using a deep learning system. The cognitive function was measured using the Montreal Cognitive Assessment (MoCA). We conducted logistic regression models, and mediation analysis to evaluate the associations of RMPs with CSVD burden and cognitive decline. Results: Of the 905 subjects (mean age: 55.42±12.02 years, 54.5% female), 488 (53.9%) were classified with cognitive decline. The fractal dimension (FD) [odds ratio (OR), 0.098, 95% confidence interval (CI): 0.015-0.639, P=0.015] and global vein width (OR: 1.010, 95% CI: 1.005-1.015, P<0.001) were independent risk factors for cognitive decline after adjustment for potential confounding factors. The global artery width was significantly associated with severe CSVD burden (OR: 0.985, 95% CI: 0.974-0.997, P=0.013). The global vein width was sightly associated with severe CSVD burden (OR: 1.005, 95% CI: 1.000-1.010, P=0.050) after adjusting for potential confounders. The multivariable-adjusted odds ratios (95% CI) in highest tertile versus lowest tertile of global vein width were 1.290 (0.901-1.847) for cognitive decline and 1.546 (1.004-2.290) for severe CSVD burden, respectively. Moreover, CSVD burden played a partial mediating role in the association between global vein width and cognitive function (mediating effect 6.59%). Conclusions: RMPs are associated with cognitive decline and the development of CSVD. A proportion of the association between global vein width and cognitive decline may be attributed to the presence of CSVD burden.

9.
Pacing Clin Electrophysiol ; 46(10): 1203-1211, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37736697

RESUMO

OBJECTIVE: Patients with atrial fibrillation (AF) are highly heterogeneous, and current risk stratification scores are only modestly good at predicting an individual's stroke risk. We aim to identify distinct AF clinical phenotypes with cluster analysis to optimize stroke prevention practices. METHODS: From the prospective Chinese Atrial Fibrillation Registry cohort study, we included 4337 AF patients with CHA2 DS2 -VASc≥2 for males and 3 for females who were not treated with oral anticoagulation. We randomly split the patients into derivation and validation sets by a ratio of 7:3. In the derivation set, we used outcome-driven patient clustering with metric learning to group patients into clusters with different risk levels of ischemic stroke and systemic embolism, and identify clusters of patients with low risks. Then we tested the results in the validation set, using the clustering rules generated from the derivation set. Finally, the survival decision tree was applied as a sensitivity analysis to confirm the results. RESULTS: Up to the follow-up of 1 year, 140 thromboembolic events (ischemic stroke or systemic embolism) occurred. After supervised metric learning from six variables involved in CHA2 DS2 -VASc scheme, we identified a cluster of patients (255/3035, 8.4%) at an annual thromboembolism risk of 0.8% in the derivation set. None of the patients in the low-risk cluster had prior thromboembolism, heart failure, diabetes, or age older than 70 years. After applying the regularities from metric learning on the validation set, we also identified a cluster of patients (137/1302, 10.5%) with an incident thromboembolism rate of 0.7%. Sensitivity analysis based on the survival decision tree approach selected a subgroup of patients with the same phenotypes as the metric-learning algorithm. CONCLUSIONS: Cluster analysis identified a distinct clinical phenotype at low risk of stroke among high-risk [CHA2 DS2 -VASc≥2 (3 for females)] patients with AF. The use of the novel analytic approach has the potential to prevent a subset of AF patients from unnecessary anticoagulation and avoid the associated risk of major bleeding.

10.
Strahlenther Onkol ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603050

RESUMO

PURPOSE: The goal of this study was to propose a knowledge-based planning system which could automatically design plans for lung cancer patients treated with intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: From May 2018 to June 2020, 612 IMRT treatment plans of lung cancer patients were retrospectively selected to construct a planning database. Knowledge-based planning (KBP) architecture named αDiar was proposed in this study. It consisted of two parts separated by a firewall. One was the in-hospital workstation, and the other was the search engine in the cloud. Based on our previous study, A­Net in the in-hospital workstation was used to generate predicted virtual dose images. A search engine including a three-dimensional convolutional neural network (3D CNN) was constructed to derive the feature vectors of dose images. By comparing the similarity of the features between virtual dose images and the clinical dose images in the database, the most similar feature was found. The optimization parameters (OPs) of the treatment plan corresponding to the most similar feature were assigned to the new plan, and the design of a new treatment plan was automatically completed. After αDiar was developed, we performed two studies. The first retrospective study was conducted to validate whether this architecture was qualified for clinical practice and involved 96 patients. The second comparative study was performed to investigate whether αDiar could assist dosimetrists in improving the quality of planning for the patients. Two dosimetrists were involved and designed plans for only one trial with and without αDiar; 26 patients were involved in this study. RESULTS: The first study showed that about 54% (52/96) of the automatically generated plans would achieve the dosimetric constraints of the Radiation Therapy Oncology Group (RTOG) and about 93% (89/96) of the automatically generated plans would achieve the dosimetric constraints of the National Comprehensive Cancer Network (NCCN). The second study showed that the quality of treatment planning designed by junior dosimetrists was improved with the help of αDiar. CONCLUSIONS: Our results showed that αDiar was an effective tool to improve planning quality. Over half of the patients' plans could be designed automatically. For the remaining patients, although the automatically designed plans did not fully meet the clinical requirements, their quality was also better than that of manual plans.

11.
ACS Chem Neurosci ; 14(18): 3472-3486, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37647597

RESUMO

Understanding the selectivity mechanisms of inhibitors toward highly similar proteins is very important in new drug discovery. Developing highly selective targeting of leucine-rich repeat kinase 2 (LRRK2) kinases for the treatment of Parkinson's disease (PD) is challenging because of the similarity of the kinase ATP binding pocket. During the development of LRRK2 inhibitors, off-target effects on other kinases, especially TTK and JAK2 kinases, have been observed. As a result, significant time and resources have been devoted to improving the selectivity for the LRRK2 target. DNL201 is an LRRK2 kinase inhibitor entering phase I clinical studies. The experiments have shown that DNL201 significantly inhibits LRRK2 kinase activity, with >167-fold selectivity over JAK2 and TTK kinases. However, the potential mechanisms of inhibitor preferential binding to LRRK2 kinase are still not well elucidated. In this work, to reveal the underlying general selectivity mechanism, we carried out several computational methods and comprehensive analyses from both the binding thermodynamics and kinetics on two representative LRRK2 inhibitors (DNL201 and GNE7915) to LRRK2. Our results suggest that the structural and kinetic differences between the proteins may play a key role in determining the activity of the selective small-molecule inhibitor. The selectivity mechanisms proposed in this work could be helpful for the rational design of novel selective LRRK2 kinase inhibitors against PD.


Assuntos
Descoberta de Drogas , Doença de Parkinson , Humanos , Cinética , Termodinâmica , Simulação por Computador , Doença de Parkinson/tratamento farmacológico , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina
12.
Lipids Health Dis ; 22(1): 81, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365637

RESUMO

BACKGROUND: Dysregulation of lipid metabolism is closely associated with cancer progression. The study aimed to establish a prognostic model to predict distant metastasis-free survival (DMFS) in patients with nasopharyngeal carcinoma (NPC), based on lipidomics. METHODS: The plasma lipid profiles of 179 patients with locoregionally advanced NPC (LANPC) were measured and quantified using widely targeted quantitative lipidomics. Then, patients were randomly split into the training (125 patients, 69.8%) and validation (54 patients, 30.2%) sets. To identify distant metastasis-associated lipids, univariate Cox regression was applied to the training set (P < 0.05). A deep survival method called DeepSurv was employed to develop a proposed model based on significant lipid species (P < 0.01) and clinical biomarkers to predict DMFS. Concordance index and receiver operating curve analyses were performed to assess model effectiveness. The study also explored the potential role of lipid alterations in the prognosis of NPC. RESULTS: Forty lipids were recognized as distant metastasis-associated (P < 0.05) by univariate Cox regression. The concordance indices of the proposed model were 0.764 (95% confidence interval (CI), 0.682-0.846) and 0.760 (95% CI, 0.649-0.871) in the training and validation sets, respectively. High-risk patients had poorer 5-year DMFS compared with low-risk patients (Hazard ratio, 26.18; 95% CI, 3.52-194.80; P < 0.0001). Moreover, the six lipids were significantly correlated with immunity- and inflammation-associated biomarkers and were mainly enriched in metabolic pathways. CONCLUSIONS: Widely targeted quantitative lipidomics reveals plasma lipid predictors for LANPC, the prognostic model based on that demonstrated superior performance in predicting metastasis in LANPC patients.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Prognóstico , Carcinoma/patologia , Lipidômica , Lipídeos
13.
Obesity (Silver Spring) ; 31(6): 1600-1609, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37157112

RESUMO

OBJECTIVE: The aim of this study was to quantify abdominal adiposity and generate data-driven adiposity subtypes with different diabetes risks. METHODS: A total of 3817 participants from the Pinggu Metabolic Disease Study were recruited. A deep-learning-based recognition model on abdominal computed tomography (CT) images (A-CT model) was developed and validated in 100 randomly selected cases. The volumes and proportions of subcutaneous fat, visceral fat, liver fat, and muscle fat were automatically recognized in all cases. K-means clustering was used to identify subgroups using the proportions of the four fat components. RESULTS: The Dice indices among the measurements assessed by the A-CT model and manual evaluation to detect liver fat, muscle fat, and subcutaneous fat areas were 0.96, 0.95, and 0.92, respectively. Three subtypes were generated separately in men and women: visceral fat dominant type (VFD); subcutaneous fat dominant type (SFD); and intermuscular fat dominant type (MFD). Compared with the SFD group, the MFD group had similar diabetes risk, and the VFD group had a 60% higher diabetes risk when age and BMI were adjusted for in men. The adjusted odds ratio for diabetes was 1.92 (95% CI: 1.32-2.78) in the MFD group and 6.14 (95% CI: 4.18-9.03) in the VFD group in women. CONCLUSIONS: This study identified gender-specific abdominal adiposity subgroups, which may help clinicians to distinguish diabetes risk quickly and automatically.


Assuntos
Adiposidade , Aprendizado Profundo , Masculino , Humanos , Feminino , Obesidade/metabolismo , Tomografia Computadorizada por Raios X , Fígado/metabolismo , Obesidade Abdominal/diagnóstico por imagem , Obesidade Abdominal/metabolismo , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/metabolismo
14.
Quant Imaging Med Surg ; 13(4): 2675-2687, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37064374

RESUMO

Background: Functional adrenal tumors (FATs) are mainly diagnosed by biochemical analysis. Traditional imaging tests have limitations and cannot be used alone to diagnose FATs. In this study, we aimed to establish an artificially intelligent diagnostic model based on computed tomography (CT) images to distinguish different types of FATs. Methods: A cohort study of 375 patients diagnosed with hyperaldosteronism (HA), Cushing's syndrome (CS), and pheochromocytoma in our center between March 2015 and June 2020 was conducted. Retrospectively, patients were randomly divided into three data sets: the training set (270 cases), the testing set (60 cases), and the retrospective trial set (45 cases). An artificially intelligent diagnostic model based on CT images was established by transferring data from the training set into the deep learning network. The testing set was then used to evaluate the accuracy of the model compared to that of physicians' judgments. The retrospective trial set was used to evaluate the quantification and distinction performance. Results: The deep learning model achieved an average area under the receiver operating characteristic (ROC) curve (AUC) of 0.915, and the AUCs in all three FAT types were greater than 0.882. The AUC of the model tested on the retrospective dataset reached above 0.849. In the quantitative evaluation of tumor lesion area recognition, the diagnostic model also obtained a segmentation Dice coefficient of 0.69. With the help of the proposed model, clinicians reached 92.5% accuracy in distinguishing FATs, compared to 80.6% accuracy when using only their judgment (P<0.05). Conclusions: The result of our study shows that the diagnostic model based on a deep learning network can distinguish and quantify three common FAT types based on texture features of contrast-enhanced CT images. The model can quantify and distinguish functional tumors without any endocrine tests and can assist clinicians in the diagnostic procedure.

15.
J Neurotrauma ; 40(13-14): 1366-1375, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062757

RESUMO

Abstract Prognostic prediction of traumatic brain injury (TBI) in patients is crucial in clinical decision and health care policy making. This study aimed to develop and validate prediction models for in-hospital mortality after severe traumatic brain injury (sTBI). We developed and validated logistic regression (LR), LASSO regression, and machine learning (ML) algorithms including support vector machines (SVM) and XGBoost models. Fifty-four candidate predictors were included. Model performance was expressed in terms of discrimination (C-statistic) and calibration (intercept and slope). For model development, 2804 patients with sTBI in the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) China Registry study were included. External validation was performed in 1113 patients with sTBI in the CENTER-TBI European Registry study. XGBoost achieved high discrimination in mortality prediction, and it outperformed logistic and LASSO regression. The XGBoost model established in this study also outperformed prediction models currently available, including the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) core and International Mission for Prognosis and Analysis of Clinical Trials (CRASH) basic models. When including 54 variables, XGBoost and SVM reached C-statistics of 0.87 (95% confidence interval [CI]: 0.81-0.92) and 0.85 (95% CI: 0.79-0.90) at internal validation, and 0.88 (95% CI: 0.87-0.88) and 0.86 (95% CI: 0.85-0.87) at external validation, respectively. A simplified version of XGBoost and SVM using 26 variables selected by recursive feature elimination (RFE) reached C-statistics of 0.87 (95% CI: 0.82-0.92) and 0.86 (95% CI: 0.80-0.91) at internal validation, and 0.87 (95% CI: 0.87-0.88) and 0.87 (95% CI: 0.86-0.87) at external validation, respectively. However, when the number of variables included decreased, the difference between ML and LR diminished. All the prediction models can be accessed via a web-based calculator. Glasgow Coma Scale (GCS) score, age, pupillary light reflex, Injury Severity Score (ISS) for brain region, and the presence of acute subdural hematoma were the five strongest predictors for mortality prediction. The study showed that ML techniques such as XGBoost may capture information hidden in demographic and clinical predictors of patients with sTBI and yield more precise predictions compared with LR approaches.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Escala de Coma de Glasgow , Prognóstico , Algoritmos , Aprendizado de Máquina
16.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37099690

RESUMO

Rapid and accurate prediction of drug-target affinity can accelerate and improve the drug discovery process. Recent studies show that deep learning models may have the potential to provide fast and accurate drug-target affinity prediction. However, the existing deep learning models still have their own disadvantages that make it difficult to complete the task satisfactorily. Complex-based models rely heavily on the time-consuming docking process, and complex-free models lacks interpretability. In this study, we introduced a novel knowledge-distillation insights drug-target affinity prediction model with feature fusion inputs to make fast, accurate and explainable predictions. We benchmarked the model on public affinity prediction and virtual screening dataset. The results show that it outperformed previous state-of-the-art models and achieved comparable performance to previous complex-based models. Finally, we study the interpretability of this model through visualization and find it can provide meaningful explanations for pairwise interaction. We believe this model can further improve the drug-target affinity prediction for its higher accuracy and reliable interpretability.


Assuntos
Benchmarking , Descoberta de Drogas , Sistemas de Liberação de Medicamentos
17.
Ther Adv Chronic Dis ; 14: 20406223231158561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895330

RESUMO

Background: Prediction of bleeding is critical for acute myocardial infarction (AMI) patients after percutaneous coronary intervention (PCI). Machine learning methods can automatically select the combination of the important features and learn their underlying relationship with the outcome. Objectives: We aimed to evaluate the predictive value of machine learning methods to predict in-hospital bleeding for AMI patients. Design: We used data from the multicenter China Acute Myocardial Infarction (CAMI) registry. The cohort was randomly partitioned into derivation set (50%) and validation set (50%). We applied a state-of-art machine learning algorithm, eXtreme Gradient Boosting (XGBoost), to automatically select features from 98 candidate variables and developed a risk prediction model to predict in-hospital bleeding (Bleeding Academic Research Consortium [BARC] 3 or 5 definition). Results: A total of 16,736 AMI patients who underwent PCI were finally enrolled. 45 features were automatically selected and were used to construct the prediction model. The developed XGBoost model showed ideal prediction results. The area under the receiver-operating characteristic curve (AUROC) on the derivation data set was 0.941 (95% CI = 0.909-0.973, p < 0.001); the AUROC on the validation set was 0.837 (95% CI = 0.772-0.903, p < 0.001), which was better than the CRUSADE score (AUROC: 0.741; 95% CI = 0.654-0.828, p < 0.001) and ACUITY-HORIZONS score (AUROC: 0.731; 95% CI = 0.641-0.820, p < 0.001). We also developed an online calculator with 12 most important variables (http://101.89.95.81:8260/), and AUROC still reached 0.809 on the validation set. Conclusion: For the first time, we developed the CAMI bleeding model using machine learning methods for AMI patients after PCI. Trial registration: NCT01874691. Registered 11 Jun 2013.

18.
Curr Pharm Biotechnol ; 24(13): 1673-1681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825694

RESUMO

BACKGROUND: Intensive care unit (ICU) resources are inadequate for the large population in China, so it is essential for physicians to evaluate the condition of patients at admission. In this study, our objective was to construct a machine-learning risk prediction model for mortality in respiratory intensive care units (RICUs). METHODS: This study involved 817 patients who made 1,063 visits and who were admitted to the RICU from 2012 to 2017. Potential predictors such as demographic information, laboratory results, vital signs and clinical characteristics were considered. We constructed eXtreme Gradient Boosting (XGBoost) models and compared performances with random forest models, logistic regression models and clinical scores such as Acute Physiology and Chronic Health Evaluation II (APACHE II) and the sequential organ failure assessment (SOFA) system. The model was externally validated using data from Medical Information Mart for Intensive Care (MIMIC-III) database. A web-based calculator was developed for practical use. RESULTS: Among the 1,063 visits, the RICU mortality rate was 13.5%. The XGBoost model achieved the best performance with the area under the receiver operating characteristics curve (AUROC) of 0.860 (95% confidence interval (CI): 0.808 - 0.909) in the test set, which was significantly greater than APACHE II (0.749, 95% CI: 0.674 - 0.820; P = 0.015) and SOFA (0.751, 95% CI: 0.669 - 0.818; P = 0.018). The Hosmer-Lemeshow test indicated a good calibration of our predictive model in the test set with a P-value of 0.176. In the external validation dataset, the AUROC of XGBoost model was 0.779 (95% CI: 0.714 - 0.813). The final model contained variables that were previously known to be associated with mortality, but it also included some features absent from the clinical scores. The mean N-terminal pro-B-type natriuretic peptide (NTproBNP) of survivors was significantly lower than that of the non-survival group (2066.43 pg/mL vs. 8232.81 pg/mL; P < 0.001). CONCLUSIONS: Our results showed that the XGBoost model could be a suitable model for predicting RICU mortality with easy-to-collect variables at admission and help intensivists improve clinical decision-making for RICU patients. We found that higher NT-proBNP can be a good indicator of poor prognosis.


Assuntos
Cuidados Críticos , Unidades de Terapia Intensiva , Humanos , Prognóstico , APACHE , Aprendizado de Máquina
19.
Eur J Med Chem ; 250: 115199, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827953

RESUMO

Deep learning-based in silico alternatives have been demonstrated to be of significant importance in the acceleration of the drug discovery process and enhancement of success rates. Cyclin-dependent kinase 12 (CDK12) is a transcription-related cyclin-dependent kinase that may act as a biomarker and therapeutic target for cancers. However, currently, there is no high selective CDK12 inhibitor in clinical development and the identification of new specific CDK12 inhibitors has become increasingly challenging due to their similarity with CDK13. In this study, we developed a virtual screening workflow that combines deep learning with virtual screening tools and can be applied rapidly to millions of molecules. We designed a Transformer architecture Drug-Target Interaction (DTI) model with dual-branched self-supervised pre-trained molecular graph models and protein sequence models. Our predictive model produced satisfactory predictions for various targets, including CDK12, with several novel hits. We screened a large compound library consisting of 4.5 million drug-like molecules and recommended a list of potential CDK12 inhibitors for further experimental testing. In kinase assay, compared to the positive CDK12 inhibitor THZ531, the compounds CICAMPA-01, 02, 03 displayed more effective inhibition of CDK12, up to three times as much as THZ531. The compounds CICAMPA-03, 05, 04, 07 showed less inhibition of CDK13 compare to THZ531. In vitro, the IC50 of CICAMPA-01, 04, 05, 06, 09 was less than 3 µM in the HER2 positive CDK12 amplification breast cancer cell line BT-474. Overall, this study provides a highly efficient and end-to-end deep learning protocol, in conjunction with molecular docking, for discovering CDK12 inhibitors in cancers. Additionally, we disclose five novel CDK12 inhibitors. These results may accelerate the discovery of novel chemical-class drugs for cancer treatment.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Simulação de Acoplamento Molecular , Quinases Ciclina-Dependentes , Neoplasias da Mama/tratamento farmacológico
20.
ACS Chem Neurosci ; 14(3): 481-493, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649061

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects more than ten million people worldwide. However, the current PD treatments are still limited and alternative treatment strategies are urgently required. Leucine-rich repeat kinase 2 (LRRK2) has been recognized as a promising target for PD treatment. However, there are no approved LRRK2 inhibitors on the market. To rapidly identify potential drug repurposing candidates that inhibit LRRK2 kinase, we report a structure-based drug repurposing workflow that combines molecular docking, recursive partitioning model, molecular dynamics (MD) simulation, and molecular mechanics-generalized Born surface area (MM-GBSA) calculation. Thirteen compounds screened from our drug repurposing workflow were further evaluated through the experiment. The experimental results showed six drugs (Abivertinib, Aumolertinib, Encorafenib, Bosutinib, Rilzabrutinib, and Mobocertinib) with IC50 less than 5 µM that were identified as potential LRRK2 kinase inhibitors. The most potent compound Abivertinib showed potent inhibitions with IC50 toward G2019S mutation and wild-type LRRK2 of 410.3 nM and 177.0 nM, respectively. Our combination screening strategy had a 53% hit rate in this repurposing task. MD simulations and MM-GBSA free energy analysis further revealed the atomic binding mechanism between the identified drugs and G2019S LRRK2. In summary, the results showed that our drug repurposing workflow could be used to identify potent compounds for LRRK2. The potent inhibitors discovered in our work can be a starting point to develop more effective LRRK2 inhibitors.


Assuntos
Reposicionamento de Medicamentos , Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA