Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Surg ; 110(5): 2593-2603, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748500

RESUMO

PURPOSE: The authors aimed to establish an artificial intelligence (AI)-based method for preoperative diagnosis of breast lesions from contrast enhanced mammography (CEM) and to explore its biological mechanism. MATERIALS AND METHODS: This retrospective study includes 1430 eligible patients who underwent CEM examination from June 2017 to July 2022 and were divided into a construction set (n=1101), an internal test set (n=196), and a pooled external test set (n=133). The AI model adopted RefineNet as a backbone network, and an attention sub-network, named convolutional block attention module (CBAM), was built upon the backbone for adaptive feature refinement. An XGBoost classifier was used to integrate the refined deep learning features with clinical characteristics to differentiate benign and malignant breast lesions. The authors further retrained the AI model to distinguish in situ and invasive carcinoma among breast cancer candidates. RNA-sequencing data from 12 patients were used to explore the underlying biological basis of the AI prediction. RESULTS: The AI model achieved an area under the curve of 0.932 in diagnosing benign and malignant breast lesions in the pooled external test set, better than the best-performing deep learning model, radiomics model, and radiologists. Moreover, the AI model has also achieved satisfactory results (an area under the curve from 0.788 to 0.824) for the diagnosis of in situ and invasive carcinoma in the test sets. Further, the biological basis exploration revealed that the high-risk group was associated with the pathways such as extracellular matrix organization. CONCLUSIONS: The AI model based on CEM and clinical characteristics had good predictive performance in the diagnosis of breast lesions.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Mamografia , Humanos , Feminino , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Meios de Contraste , Idoso , Aprendizado Profundo , Mama/diagnóstico por imagem , Mama/patologia
2.
Hum Brain Mapp ; 45(5): e26670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553866

RESUMO

Major depressive disorder (MDD) is a clinically heterogeneous disorder. Its mechanism is still unknown. Although the altered intersubject variability in functional connectivity (IVFC) within gray-matter has been reported in MDD, the alterations to IVFC within white-matter (WM-IVFC) remain unknown. Based on the resting-state functional MRI data of discovery (145 MDD patients and 119 healthy controls [HCs]) and validation cohorts (54 MDD patients, and 78 HCs), we compared the WM-IVFC between the two groups. We further assessed the meta-analytic cognitive functions related to the alterations. The discriminant WM-IVFC values were used to classify MDD patients and predict clinical symptoms in patients. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging association analyses were further conducted to investigate gene expression profiles associated with WM-IVFC alterations in MDD, followed by a set of gene functional characteristic analyses. We found extensive WM-IVFC alterations in MDD compared to HCs, which were associated with multiple behavioral domains, including sensorimotor processes and higher-order functions. The discriminant WM-IVFC could not only effectively distinguish MDD patients from HCs with an area under curve ranging from 0.889 to 0.901 across three classifiers, but significantly predict depression severity (r = 0.575, p = 0.002) and suicide risk (r = 0.384, p = 0.040) in patients. Furthermore, the variability-related genes were enriched for synapse, neuronal system, and ion channel, and predominantly expressed in excitatory and inhibitory neurons. Our results obtained good reproducibility in the validation cohort. These findings revealed intersubject functional variability changes of brain WM in MDD and its linkage with gene expression profiles, providing potential implications for understanding the high clinical heterogeneity of MDD.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transcriptoma , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Heliyon ; 10(2): e24456, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38268833

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is corelated with tumor-associated material (TAM), coagulation system and adipocyte tissue, but the relationships between them have been inconsistent. Our study aimed to explore the cut-off intervals of variables that are non-linearly related to ccRCC pathological T stage for providing clues to understand these discrepancies, and to effectively preoperative risk stratification. Methods: This retrospective analysis included 218 ccRCC patients with a clear pathological T stage between January 1st, 2014, and November 30th, 2021. The patients were categorized into two cohorts based on their pathological T stage: low T stage (T1 and T2) and high T stage (T3 and T4). Abdominal and perirenal fat variables were measured based on preoperative CT images. Blood biochemical indexes from the last time before surgery were also collected. The generalized sum model was used to identify cut-off intervals for nonlinear variables. Results: In specific intervals, fibrinogen levels (FIB) (2.63-4.06 g/L) and platelet (PLT) counts (>200.34 × 109/L) were significantly positively correlated with T stage, while PLT counts (<200.34 × 109/L) were significantly negatively correlated with T stage. Additionally, tumor-associated material exhibited varying degrees of positive correlation with T stage at different cut-off intervals (cut-off value: 90.556 U/mL). Conclusion: Preoperative PLT, FIB and TAM are nonlinearly related to pathological T stage. This study is the first to provide specific cut-off intervals for preoperative variables that are nonlinearly related to ccRCC T stage. These intervals can aid in the risk stratification of ccRCC patients before surgery, allowing for developing a more personalized treatment planning.

4.
J Magn Reson Imaging ; 59(5): 1710-1722, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37497811

RESUMO

BACKGROUND: Accurate diagnosis of breast lesions and discrimination of axillary lymph node (ALN) metastases largely depend on radiologist experience. PURPOSE: To develop a deep learning-based whole-process system (DLWPS) for segmentation and diagnosis of breast lesions and discrimination of ALN metastasis. STUDY TYPE: Retrospective. POPULATION: 1760 breast patients, who were divided into training and validation sets (1110 patients), internal (476 patients), and external (174 patients) test sets. FIELD STRENGTH/SEQUENCE: 3.0T/dynamic contrast-enhanced (DCE)-MRI sequence. ASSESSMENT: DLWPS was developed using segmentation and classification models. The DLWPS-based segmentation model was developed by the U-Net framework, which combined the attention module and the edge feature extraction module. The average score of the output scores of three networks was used as the result of the DLWPS-based classification model. Moreover, the radiologists' diagnosis without and with the DLWPS-assistance was explored. To reveal the underlying biological basis of DLWPS, genetic analysis was performed based on RNA-sequencing data. STATISTICAL TESTS: Dice similarity coefficient (DI), area under receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and kappa value. RESULTS: The segmentation model reached a DI of 0.828 and 0.813 in the internal and external test sets, respectively. Within the breast lesions diagnosis, the DLWPS achieved AUCs of 0.973 in internal test set and 0.936 in external test set. For ALN metastasis discrimination, the DLWPS achieved AUCs of 0.927 in internal test set and 0.917 in external test set. The agreement of radiologists improved with the DLWPS-assistance from 0.547 to 0.794, and from 0.848 to 0.892 in breast lesions diagnosis and ALN metastasis discrimination, respectively. Additionally, 10 breast cancers with ALN metastasis were associated with pathways of aerobic electron transport chain and cytoplasmic translation. DATA CONCLUSION: The performance of DLWPS indicates that it can promote radiologists in the judgment of breast lesions and ALN metastasis and nonmetastasis. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética
5.
Chin J Cancer Res ; 35(4): 408-423, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691895

RESUMO

Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography (CEM) images. Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system (MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion (AFF) algorithm that could intelligently incorporates multiple types of information from CEM images. The average free-response receiver operating characteristic score (AFROC-Score) was presented to validate system's detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve (AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases, comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists' performance. Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909 [95% confidence interval (95% CI): 0.822-0.996] and 0.912 (95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists' average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance. Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions, and greatly enhanced the overall performance of radiologists.

6.
Br J Radiol ; 96(1148): 20220051, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227804

RESUMO

OBJECTIVE: To investigate the correlation between the risk of breast cancer for high-risk females and the density and background parenchymal enhancement (BPE) on contrast-enhanced spectral mammography (CESM). METHODS: Females at high-risk, without breast cancer history and received CESM from July 2016 to December 2017 were retrospectively enrolled. The longest follow-up time was 4.5 years, and patients who developed breast cancer with maximized follow-up time were classified as cancer cohort, while females who did not develop breast cancer were categorized as control cohort. These two cohorts were one-to-one matched in age, family and/or genetic history of breast cancer, menopausal status and BRCA status. The density and BPE at CESM imaging were assessed. Conditional logistic regression was applied to evaluate the relationship between imaging features and breast cancer risk. RESULTS: During the follow-up interval, 90 women at high-risk without history of breast cancer were newly diagnosed. Compared with minimal BPE, increasing BPE levels were associated with the risk of breast cancer among high-risk females in a time interval of 4.5 years (mild: odds ratio [OR]=3.2, p = 0.001; moderate: OR = 4.0, p = 0.002; marked: OR = 11.2, p < 0.001). In addition, females with mild, moderate or marked BPE were four times more likely to be diagnosed with breast cancer than females with minimal BPE in a time interval of 4.5 years (OR = 4.0, p < 0.001). CONCLUSION: Qualitative CESM BPE assessment may be useful in the prediction of breast cancer risk among high-risk females. ADVANCES IN KNOWLEDGE: • Qualitative CESM BPE assessment may be useful in the prediction of breast cancer risk among high-risk women during the follow-up period of 4.5 years. • The significance of breast density as an independent risk factor is not fully established for high-risk women during the follow-up period of 4.5 years.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Estudos Retrospectivos , Mama/diagnóstico por imagem , Mamografia/métodos , Densidade da Mama , Imageamento por Ressonância Magnética/métodos
7.
Eur Radiol ; 33(8): 5411-5422, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37014410

RESUMO

OBJECTIVE: To construct and test a nomogram based on intra- and peritumoral radiomics and clinical factors for predicting malignant BiRADS 4 lesions on contrast-enhanced spectral mammography. METHODS: A total of 884 patients with BiRADS 4 lesions were enrolled from two centers. For each lesion, five ROIs were defined using the intratumoral region (ITR), peritumoral regions (PTRs) of 5 and 10 mm around the tumor, and ITR plus PTRs of 5 mm and 10 mm. Five radiomics signatures were established by LASSO after selecting features. A nomogram was built using selected signatures and clinical factors by multivariable logistic regression analysis. The performance of the nomogram was assessed with the AUC, decision curve analysis, and calibration curves, and also compared with the radiomics model, clinical model, and radiologists. RESULTS: The nomogram built by three radiomics signatures (constructed from ITR, 5 mm PTR, and ITR + 10 mm PTR) and two clinical factors (age and BiRADS category) showed powerful predictive ability in internal and external test sets with AUCs of 0.907 and 0.904, respectively. The calibration curves, decision curve analysis, showed favorable predictive performance of the nomogram. In addition, radiologists improved the diagnostic performance with the help of nomogram. CONCLUSION: The nomogram established via intratumoral and peritumoral radiomics features and clinical risk factors had the best performance in distinguishing benign and malignant BiRADS 4 lesions, which could help radiologists improve diagnostic capabilities. KEY POINTS: • Radiomics features from peritumoral regions in contrast-enhanced spectral mammography images may provide valuable information for the diagnosis of benign and malignant breast imaging reporting and data system category 4 breast lesions. • The nomogram incorporated intra- and peritumoral radiomics features and clinical variables have good application prospects in assisting clinical decision-makers.


Assuntos
Mama , Mamografia , Humanos , Mama/diagnóstico por imagem , Área Sob a Curva , Calibragem , Nomogramas , Estudos Retrospectivos
8.
Acad Radiol ; 30 Suppl 2: S133-S142, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088646

RESUMO

RATIONALE AND OBJECTIVES: This multicenter study aimed to explore the feasibility of radiomics based on intra- and peritumoral regions on preoperative breast cancer contrast-enhanced mammography (CEM) to predict axillary lymph node (ALN) metastasis. MATERIALS AND METHODS: A total of 809 patients with preoperative breast cancer CEM images from two centers were retrospectively recruited. Least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features extracted from CEM images in regions of the tumor and peritumoral area of five and ten mm as well as construct radiomics signature. A nomogram, including the optimal radiomics signature and clinicopathological factors, was then constructed. Nomogram performance was evaluated using AUC and compared with breast radiologists directly. RESULTS: In the internal testing set, AUCs of peritumoral signatures decreased when the peritumoral area increased and signaturetumor + 10mm demonstrated the best performance with an AUC of 0.712. The nomogram incorporating signaturetumor + 10mm, tumor diameter, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and CEM-reported lymph node status yielded maximum AUCs of 0.753 and 0.732 in internal and external testing sets, respectively. Moreover, the nomogram outperformed radiologists and improved diagnostic performance of radiologists. CONCLUSION: The nomogram based on CEM intra- and peritumoral regions may provide a noninvasive auxiliary tool to guide treatment strategy of ALN metastasis in breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Estudos Retrospectivos , Mamografia/métodos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
9.
EClinicalMedicine ; 58: 101913, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36969336

RESUMO

Background: Breast cancer is the leading cause of cancer-related deaths in women. However, accurate diagnosis of breast cancer using medical images heavily relies on the experience of radiologists. This study aimed to develop an artificial intelligence model that diagnosed single-mass breast lesions on contrast-enhanced mammography (CEM) for assisting the diagnostic workflow. Methods: A total of 1912 women with single-mass breast lesions on CEM images before biopsy or surgery were included from June 2017 to October 2022 at three centres in China. Samples were divided into training and validation sets, internal testing set, pooled external testing set, and prospective testing set. A fully automated pipeline system (FAPS) using RefineNet and the Xception + Pyramid pooling module (PPM) was developed to perform the segmentation and classification of breast lesions. The performances of six radiologists and adjustments in Breast Imaging Reporting and Data System (BI-RADS) category 4 under the FAPS-assisted strategy were explored in pooled external and prospective testing sets. The segmentation performance was assessed using the Dice similarity coefficient (DSC), and the classification was assessed using heatmaps, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The radiologists' reading time was recorded for comparison with the FAPS. This trial is registered with China Clinical Trial Registration Centre (ChiCTR2200063444). Findings: The FAPS-based segmentation task achieved DSCs of 0.888 ± 0.101, 0.820 ± 0.148 and 0.837 ± 0.132 in the internal, pooled external and prospective testing sets, respectively. For the classification task, the FAPS achieved AUCs of 0.947 (95% confidence interval [CI]: 0.916-0.978), 0.940 (95% [CI]: 0.894-0.987) and 0.891 (95% [CI]: 0.816-0.945). It outperformed radiologists in terms of classification efficiency based on single lesions (6 s vs 3 min). Moreover, the FAPS-assisted strategy improved the performance of radiologists. BI-RADS category 4 in 12.4% and 13.3% of patients was adjusted in two testing sets with the assistance of FAPS, which may play an important guiding role in the selection of clinical management strategies. Interpretation: The FAPS based on CEM demonstrated the potential for the segmentation and classification of breast lesions, and had good generalisation ability and clinical applicability. Funding: This study was supported by the Taishan Scholar Foundation of Shandong Province of China (tsqn202211378), National Natural Science Foundation of China (82001775), Natural Science Foundation of Shandong Province of China (ZR2021MH120), and Special Fund for Breast Disease Research of Shandong Medical Association (YXH2021ZX055).

10.
Acad Radiol ; 30(6): 1081-1091, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36513572

RESUMO

OBJECTIVES: Chronic coronary heart disease (CHD) is correlated with an increased risk of cognitive impairment (CI), but the mechanisms underlying these changes remain unclear. The aim of the present study was to explore the potential changes in regional spontaneous brain activities and their association with CI, to explore the pathophysiological mechanisms underlying CI in patients with CHD. MATERIALS AND METHODS: A total of 71 CHD patients and 73 matched healthy controls (HCs) were included in this study. Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used to assess the participants' cognitive functions. Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation(fALFF) values were calculated to determine regional spontaneous brain activity. Coronary artery calcium (CAC) score provides a measure of the total coronary plaque burden. Mediation analyses were performed to test whether CHD's effects on cognitive decline are mediated by decreased regional spontaneous brain activity. RESULTS: Patients with CHD had significantly lower MMSE and MoCA scores than the HCs. Compared with the HCs, the patients with CHD demonstrated significantly decreased ReHo and fALFF values in the bilateral medial superior frontal gyrus (SFGmed), left superior temporal gyrus (TPOsup) and left middle temporal gyrus (TPOmid). Impaired cognitive performance was positively correlated with decreased activities in the SFGmed. Mediation analyses revealed that the decreased regional spontaneous brain activity in the SFGmed played a critical role in the relationship between the increase in CAC score and the MoCA and MMSE scores. CONCLUSION: The abnormalities of spontaneous brain activity in SFGmed may provide insights into the neurological pathophysiology underlying CHD associated with cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Doença das Coronárias , Humanos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Cognição/fisiologia , Doença das Coronárias/complicações , Doença das Coronárias/diagnóstico por imagem
11.
Br J Radiol ; 96(1143): 20220068, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542866

RESUMO

OBJECTIVE: To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. METHODS: This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model. RESULTS: The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) (p = 0.361). CONCLUSIONS: The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans. ADVANCES IN KNOWLEDGE: The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.


Assuntos
Neoplasias da Mama , Linfadenopatia , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Radiômica , Nomogramas , Mamografia , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
12.
J Magn Reson Imaging ; 58(3): 827-837, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36579618

RESUMO

BACKGROUND: Characterization of the dynamics of functional brain network has gained increased attention in the study of depression. However, most studies have focused on single temporal dimension, while ignoring spatial dimensional information, hampering the discovery of validated biomarkers for depression. PURPOSE: To integrate temporal and spatial functional MRI variability features of dynamic brain network in machine-learning techniques to distinguish patients with major depressive disorder (MDD) from healthy controls (HCs). STUDY TYPE: Prospective. POPULATION: A discovery cohort including 119 patients and 106 HCs and an external validation cohort including 126 patients and 124 HCs from Rest-meta-MDD consortium. FIELD STRENGTH/SEQUENCE: A 3.0 T/resting-state functional MRI using the gradient echo sequence. ASSESSMENT: A random forest (RF) model integrating temporal and spatial variability features of dynamic brain networks with separate feature selection method (MSFS ) was implemented for MDD classification. Its performance was compared with three RF models that used: temporal variability features (MTVF ), spatial variability features (MSVF ), and integrated temporal and spatial variability features with hybrid feature selection method (MHFS ). A linear regression model based on MSFS was further established to assess MDD symptom severity, with prediction performance evaluated by the correlations between true and predicted scores. STATISTICAL TESTS: Receiver operating characteristic analyses with the area under the curve (AUC) were used to evaluate models' performance. Pearson's correlation was used to assess relationship of predicted scores and true scores. P < 0.05 was considered statistically significant. RESULTS: The model with MSFS achieved the best performance, with AUCs of 0.946 and 0.834 in the discovery and validation cohort, respectively. Additionally, altered temporal and spatial variability could significantly predict the severity of depression (r = 0.640) and anxiety (r = 0.616) in MDD. DATA CONCLUSION: Integration of temporal and spatial variability features provides potential assistance for clinical diagnosis and symptom prediction of MDD. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina
13.
Br J Cancer ; 128(5): 793-804, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522478

RESUMO

BACKGROUND: This study aims to develop an attention-based deep learning model for distinguishing benign from malignant breast lesions on CESM. METHODS: Preoperative CESM images of 1239 patients, which were definitely diagnosed on pathology in a multicentre cohort, were divided into training and validation sets, internal and external test sets. The regions of interest of the breast lesions were outlined manually by a senior radiologist. We adopted three conventional convolutional neural networks (CNNs), namely, DenseNet 121, Xception, and ResNet 50, as the backbone architectures and incorporated the convolutional block attention module (CBAM) into them for classification. The performance of the models was analysed in terms of the receiver operating characteristic (ROC) curve, accuracy, the positive predictive value (PPV), the negative predictive value (NPV), the F1 score, the precision recall curve (PRC), and heat maps. The final models were compared with the diagnostic performance of conventional CNNs, radiomics models, and two radiologists with specialised breast imaging experience. RESULTS: The best-performing deep learning model, that is, the CBAM-based Xception, achieved an area under the ROC curve (AUC) of 0.970, a sensitivity of 0.848, a specificity of 1.000, and an accuracy of 0.891 on the external test set, which was higher than those of other CNNs, radiomics models, and radiologists. The PRC and the heat maps also indicated the favourable predictive performance of the attention-based CNN model. The diagnostic performance of two radiologists improved with deep learning assistance. CONCLUSIONS: Using an attention-based deep learning model based on CESM images can help to distinguishing benign from malignant breast lesions, and the diagnostic performance of radiologists improved with deep learning assistance.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Sensibilidade e Especificidade , Mama/diagnóstico por imagem , Mamografia/métodos , Redes Neurais de Computação , Neoplasias da Mama/patologia
14.
J Affect Disord ; 323: 10-20, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403803

RESUMO

BACKGROUND: Major depressive disorder (MDD) is an overbroad and heterogeneous diagnosis with no reliable or quantifiable markers. We aim to combine machine-learning techniques with the individual minimum spanning tree of the morphological brain network (MST-MBN) to determine whether the network properties can provide neuroimaging biomarkers to identify patients with MDD. METHOD: Eight morphometric features of each region of interest (ROI) were extracted from 3D T1 structural images of 106 patients with MDD and 97 healthy controls. Six feature distances of the eight morphometric features were calculated to generate a feature distance matrix, which was defined as low-order MBN. Further linear correlations of feature distances between ROIs were calculated on the basis of low-order MBN to generate individual high-order MBN. The Kruskal's algorithm was used to generate the MST to obtain the core framework of individual low-order and high-order MBN. The regional and global properties of the individual MSTs were defined as the feature. The support vector machine and back-propagation neural network was used to diagnose MDD and assess its severity, respectively. RESULT: The low-order and high-order MST-MBN constructed by cityblock distance had the excellent classification performance. The high-order MST-MBN significantly improved almost 20 % diagnostic accuracy compared with the low-order MST-MBN, and had a maximum R2 value of 0.939 between the predictive and true Hamilton Depression Scale score. The different group-level connectivity strength mainly involves the central executive network and default mode network (no statistical significance after FDR correction). CONCLUSION: We proposed an innovative individual high-order MST-MBN to capture the cortical high-order morphological correlation and make an excellent performance for individualized diagnosis and assessment of MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Mapeamento Encefálico/métodos , Depressão , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
15.
J Magn Reson Imaging ; 57(6): 1842-1853, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219519

RESUMO

BACKGROUND: Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear. PURPOSE: To investigate the potential of the proposed attention-based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast-enhanced MRI (DCE-MRI). STUDY TYPE: Retrospective. POPULATION: A total of 941 breast cancer patients who underwent DCE-MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts. FIELD STRENGTH/SEQUENCE: A 3.0 T MR scanner, DCE-MRI sequence. ASSESSMENT: A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor-ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan-Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.). STATISTICAL TESTS: Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification. RESULTS: The optimal RCNet model, that is, RCNet-tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet-tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05). DATA CONCLUSION: DCE-MRI-based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Metástase Linfática , Feminino , Humanos , Neoplasias da Mama/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
16.
Behav Brain Res ; 433: 113980, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35809693

RESUMO

BACKGROUND: Postpartum depression (PPD) is a common mood disorder with increasing incidence year by year. However, the dynamic changes in local neural activity of patients with PPD remain unclear. In this study, we utilized the dynamic amplitude of low-frequency fluctuation (dALFF) method to investigate the abnormal temporal variability of local neural activity and its potential correlation with clinical severity in PPD. METHODS: Twenty-four patients with PPD and nineteen healthy primiparous mothers controls (HCs) matched for age, education level and body mass index were examined by resting-state functional magnetic resonance imaging (rs-fMRI). A sliding-window method was used to assess the dALFF, and a k-means clustering method was used to identify dALFF states. Two-sample t-test was used to compare the differences of dALFF variability and state metrics between PPD and HCs. Pearson correlation analysis was used to analyze the relationship between dALFF variability, states metrics and clinical severity. RESULTS: (1) Patients with PPD had lower variance of dALFF than HCs in the cognitive control network, cerebellar network and sensorimotor network. (2) Four dALFF states were identified, and patients with PPD spent more time on state 2 than the other three states. The number of transitions between the four dALFF states increased in the patients compared with that in HCs. (3) Multiple dALFF states were found to be correlated with the severity of depression. The variance of dALFF in the right middle frontal gyrus was negatively correlated with the Edinburgh postnatal depression scale score. CONCLUSION: This study provides new insights into the brain dysfunction of PPD from the perspective of dynamic local brain activity, highlighting the important role of dALFF variability in understanding the neurophysiological mechanisms of PPD.


Assuntos
Encéfalo , Depressão Pós-Parto , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Depressão Pós-Parto/diagnóstico por imagem , Feminino , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética/métodos
17.
Eur J Nucl Med Mol Imaging ; 49(8): 2949-2959, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344062

RESUMO

PURPOSE: Tumor heterogeneity, which is associated with poor outcomes, has not been exhibited in the University of California, Los Angeles, Integrated Staging System (UISS), and the Stage, Size, Grade and Necrosis (SSIGN) scores. Radiomics allows an in-depth characterization of heterogeneity across the tumor, but its incremental value to the existing prognostic models for clear cell renal cell carcinoma (ccRCC) outcome is unknown. The purpose of this study was to evaluate the association between the radiomics-based tumor heterogeneity and postoperative risk of recurrence in localized ccRCC, and to assess its incremental value to UISS and SSIGN. METHODS: A multicenter 866 ccRCC patients derived from 12 Chinese hospitals were studied. The endpoint was recurrence-free survival (RFS). A CT-based radiomics signature (RS) was developed and assessed in the whole cohort and in the subgroups stratified by UISS and SSIGN. Two combined nomograms, the R-UISS (combining RS and UISS) and R-SSIGN (combining RS and SSIGN), were developed. The incremental value of RS to UISS and SSIGN in RFS prediction was evaluated. R statistical software was used for statistics. RESULTS: Patients with low radiomics scores were 4.44 times more likely to experience recurrence than those with high radiomics scores (P<0.001). Stratified analysis suggested the association is significant among low- and intermediate-risk patients identified by UISS and SSIGN. The R-UISS and R-SSIGN showed better predictive capability than UISS and SSIGN did with higher C-indices (R-UISS vs. UISS, 0.74 vs. 0.64; R-SSIGN vs. SSIGN, 0.78 vs. 0.76) and higher clinical net benefit. CONCLUSIONS: The radiomics-based tumor heterogeneity can predict outcome and add incremental value to the existing prognostic models in localized ccRCC patients. Incorporating radiomics-based tumor heterogeneity in ccRCC prognostic models may provide the opportunity to better surveillance and adjuvant clinical trial design.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Estudos de Coortes , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Estadiamento de Neoplasias , Nefrectomia , Prognóstico , Estudos Retrospectivos
18.
Quant Imaging Med Surg ; 12(2): 1270-1280, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111622

RESUMO

BACKGROUND: The molecular subtype of breast cancer is one of the most important factors affecting patient prognosis. The study aimed to analyze the association between quantitative and qualitative features of contrast-enhanced mammography (CEM) images and breast cancer molecular subtypes. METHODS: This retrospective double-center study included women who underwent CEM between November 2017 and April 2020. Each patient had at least 1 malignant lesion confirmed by pathology. The CEM images were evaluated by 2 radiologists to obtain quantitative and qualitative image features. The molecular subtypes were studied as dichotomous outcomes, including luminal versus non-luminal, human epidermal growth factor receptor (HER2)-enriched versus non-HER2-enriched, and triple-negative breast cancer (TNBC) versus non-TNBC subtypes. The association between the image features and molecular subtypes was analyzed by multivariate logistic regression, with odds ratios (ORs) and 95% confidence intervals (CIs) provided. RESULTS: A total of 151 patients with 160 malignant lesions were included in the study. For quantitative features, a higher standard deviation of lesion density was associated with non-luminal (OR =0.88, 95% CI: 0.81 to 0.96, P=0.004) and HER2-enriched breast cancers (OR =1.16, 95% CI: 1.04 to 1.28, P=0.006). The relative degree of enhancement (RDE) and contrast-to-noise ratio (CNR) were not associated with molecular subtypes. However, a higher CNR/lesion size (OR =1.06, 95% CI: 1.01 to 1.12, P=0.012) was associated with luminal subtype cancers, and a higher RDE/lesion size (OR =0.94, 95% CI: 0.88 to 1.00, P=0.035) or a higher CNR/lesion size (OR =0.94, 95% CI: 0.88-1.00, P=0.038) was associated with non-TNBCs. For qualitative features, the presence of calcification was associated with HER2-enriched breast cancers (OR =2.91, 95% CI: 1.10 to 7.67, P=0.031). The presence of architectural distortion was associated with luminal cancer (OR =14.50, 95% CI: 1.91 to 110.14, P=0.010) and non-TNBC (OR =0.05, 95% CI: 0.00 to 0.43, P=0.022). Non-mass enhancement (OR =2.78, 95% CI: 1.08 to 7.14, P=0.033) was associated with HER2-enriched breast cancers. An association remained after adjustments for age, breast thickness, and breast density (all adjusted P<0.050). CONCLUSIONS: The quantitative and qualitative imaging features of CEM could contribute to distinguishing breast cancer molecular subtypes.

19.
Eur Radiol ; 32(5): 3207-3219, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066632

RESUMO

OBJECTIVE: To investigative the performance of intratumoral and peritumoral radiomics based on contrast-enhanced spectral mammography (CESM) to preoperatively predict the effect of the neoadjuvant chemotherapy (NAC) of breast cancers. MATERIALS AND METHODS: A total of 118 patients with breast cancer who underwent preoperative CESM and NAC from July 2017 to June 2020 were retrospectively analyzed, and the patients were grouped into training (n = 81) and test sets (n = 37) according to the CESM examination time. NAC effect for each patient was assessed by pathology. Intratumoral and peritumoral radiomics features were extracted from CESM images, and feature selection was performed through the Mann-Whitney U test and least absolute shrinkage and selection operator regression (LASSO). Five radiomics signatures based on intratumoral regions, 5-mm peritumoral regions, 10-mm peritumoral regions, intratumoral regions + 5-mm peritumoral regions, and intratumoral regions + 10-mm peritumoral regions were calculated through a linear combination of selected features weighted by their respective coefficients. The prediction performance of radiomics signatures was assessed by the area under the receiver operator characteristic (ROC) curve, the precision-recall (P-R) curve, the calibration curve, and decision curve analysis (DCA). RESULTS: Ten radiomics features were selected to establish the radiomics signature of intratumoral regions + 5-mm peritumoral regions, which yielded a maximum AUC of 0.85 (95% CI, 0.72-0.98) in the test set. The calibration curves, P-R curves, and DCA showed favorable predictive performance of the five radiomics signatures. CONCLUSION: The intratumoral and peritumoral radiomics based on CESM exhibited potential for predicting the NAC effect in breast cancer, which could guide treatment decisions. KEY POINTS: • The intratumoral and peritumoral CESM-based radiomics signatures show good performance in predicting the NAC effect in breast cancer.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mamografia/métodos , Estudos Retrospectivos
20.
Brain Imaging Behav ; 16(2): 811-819, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34590214

RESUMO

Pregnancy leads to long-lasting changes in human brain structure; however, little is known regarding alterations in the topological organization of functional networks. In this study, we investigated the effect of pregnancy on human brain function networks. Resting-state fMRI data was collected from eighteen primiparous mothers and twenty-four nulliparous control women of similar age, education level and body mass index (BMI). The functional brain network and topological properties were calculated by using GRETNA toolbox. The demographic data differences between two groups were computed by the independent two sample t-test. We tested group differences in network metrics' area under curve (AUC) using non-parametric permutation test of 1,000 permutations and corrected for false discovery rate (FDR). Differences in regional networks between groups were evaluated using non-parametric permutation tests by network-based statistical analysis (NBS). Compared with the nulliparous control women, a hub node changed from left inferior temporal gyrus to right precentral gyrus in primiparous mothers, while primiparous mothers showed enhanced network global efficiency (p = 0.247), enhanced local efficiency (p = 0.410), larger clustering coefficient (p = 0.410), but shorter characteristic path length (p = 0.247), smaller normalized clustering coefficient (p = 0.111), and shorter normalized characteristic path length (p = 0.705). Although both groups of functional networks have small-world property (σ > 1), the σ values of primiparous mothers were decreased significantly. NBS evaluation showed the majority of altered connected sub-network in the primiparous mothers occurred in the bilateral frontal lobe gyrus (p < 0.05). Altered functional network metrics and an abnormal sub-network were found in primiparous mothers, suggested that pregnancy may lead to changes in the brain functional network.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Feminino , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA