Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Plant Sci ; 345: 112119, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759757

RESUMO

Domain of unknown function (DUF) protein families, which are uncharacterized and numerous within the Pfam database. Recently, studies have demonstrated that DUFs played crucial roles in plant development, but whether, or how, they function in drought resistance remain unclear. In this study, we identified the Os03g0321500 gene, encoding OsbZIP72 binding protein 1 (OsBBP1), as a target of OsbZIP72 using chromatin immunoprecipitation sequencing in rice. OsBBP1 is a novel member of DUFs, which localize both in the nuclei and cytoplasm of rice protoplasts. Furthermore, yeast one-hybrid and electrophoretic mobility shift assays confirmed the specific binding between OsbZIP72 and OsBBP1. Additionally, a luciferase reporter analysis illustrated that OsbZIP72 activated the expression of OsBBP1. Drought tolerance experiments demonstrate that the OsBBP1 CRISPER-CAS9 transgenic mutants were sensitive to drought stress, but the transgenic OsBBP1 over-expressing rice plants showed enhanced drought resistance. Moreover, drought tolerance experiments in a paddy field suggested that OsBBP1 contributed to less yield or yield-related losses under drought conditions. Mechanistically, OsBBP1 might confer drought resistance by inducing more efficient reactive oxygen species (ROS) scavenging. Several ROS scavenging-related genes showed increased expression levels in OsBBP1 overexpression lines and decreased expression levels in OsBBP1 CRISPER-CAS9 mutants under drought conditions. Thus, OsBBP1, acting downstream of OsbZIP72, contributes to drought resistance and causes less yield or yield-related losses under drought conditions.

2.
Plant Biotechnol J ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803114

RESUMO

Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two decades, the majority of them have only been separately characterized in specific varieties or single-gene modified backgrounds, thus limiting their practical application. We developed an optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably express up to twelve sgRNA targets in a single plant expression vector. In this study, we established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional improvement of complex agronomic traits in one small-scale rice transformation. This approach provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free screening and the creation of promising germplasm, by combining the precision of gene editing with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the desired traits of early heading date reduced plant height, and more effective panicles were generated without compromising yield, blast resistance and grain quality. Furthermore, the results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs) and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy would be a robust approach for exploring and applying crucial agronomic genes, as well as for generating novel elite germplasm in the future.

3.
Mol Diagn Ther ; 28(2): 189-199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261250

RESUMO

The complement system plays a dual role in the body, either as a first-line defense barrier when balanced between activation and inhibition or as a potential driver of complement-associated injury or diseases when unbalanced or over-activated. C4b-binding protein (C4BP) was the first circulating complement regulatory protein identified and it functions as an important complement inhibitor. C4BP can suppress the over-activation of complement components and prevent the complement system from attacking the host cells through the binding of complement cleavage products C4b and C3b, working in concert as a cofactor for factor I in the degradation of C4b and C3b, and consequently preventing or reducing the assembly of C3 convertase and C5 convertase, respectively. C4BP, particularly C4BP α-chain (C4BPα), exerts its unique inhibitory effects on complement activation and opsonization, systemic inflammation, and platelet activation and aggregation. It has long been acknowledged that crosstalk or interplay exists between the complement system and platelets. Our unpublished preliminary data suggest that circulating C4BPα exerts its antiplatelet effects through inhibition of both complement activity levels and complement-induced platelet reactivity. Plasma C4BPα levels appear to be significantly higher in patients sensitive to, rather than resistant to, clopidogrel, and we suggest that a plasma C4BPα measurement could be used to predict clopidogrel resistance in the clinical settings.


Assuntos
Proteína de Ligação ao Complemento C4b , Proteínas do Sistema Complemento , Humanos , Biomarcadores , Clopidogrel , Convertases de Complemento C3-C5/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo
4.
Plant Sci ; 331: 111674, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948404

RESUMO

Glycosylinositol phosphorylceramides (GIPCs) are the major sphingolipids in the plant plasma membrane. In Arabidopsis, mutations of genes involved in the synthesis of GIPCs affect many physiological aspects of plants, including growth, pollen fertility, defense, and stress signaling. Loss of function of the GIPC MANNOSYL-TRANSFERASE1 (AtGMT1) results in GIPC misglycosylation and induces plant immune responses accompanied by a severely dwarfed phenotype, thus indicating that GIPCs play important roles in plant immunity. Here, we investigated the enzymatic activity and phenotypes of transgenic lines of OsGMT1, the ortholog of AtGMT1. Sphingolipidomic analysis indicated that OsGMT1 retained the enzymatic activity of GIPC hexose (Hex) glycosylation, but the knockout lines did not accumulate H2O2. In contrast, the OsGMT1 overexpression lines showed significant down-regulation of several defense-associated or cell wall synthesis-associated genes, and enhanced sensitivity to rice blast. Furthermore, we first demonstrated the sensitivity of rice cells to MoNLP1 protein through calcein AM release assays using rice protoplasts, thus legitimizing the presence of MoNLPs in rice blast fungus. In addition, yeast two-hybrid screens using OsGMT1 as bait revealed that OsGMT1 may regulate heading time through the OsHAP5C signaling pathway. Together, our findings suggested clear physiological functional differentiation of GMT1 orthologs between rice and Arabidopsis.


Assuntos
Arabidopsis , Oryza , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Esfingolipídeos/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Imunidade Vegetal/genética , Oryza/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
J Thromb Haemost ; 21(5): 1322-1335, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738827

RESUMO

BACKGROUND: T cells and platelets reciprocally coordinate mutual functions through crosstalk or interaction. However, it is not known whether metabolic activation of and platelet response to clopidogrel could be changed if T cells were deficient or impaired in some cases and, if any, how it would work. OBJECTIVES: The objective of this study was to dissect the potential changes in platelet responses to and metabolic activation of clopidogrel in the case of T cell deficiency and to elucidate their mechanisms involved. METHODS: BALB/c athymic nude mice or euthymic mice (controls) pretreated with cyclosporine A (CsA), thymosin α1 (Tα1), or their combination were used to investigate the changes in ADP-induced platelet activation and aggregation, systemic exposure of clopidogrel and its metabolites, and mRNA/protein expression and activity levels of clopidogrel-metabolizing enzymes in the liver, respectively. RESULTS: Nude mice exhibited significantly enhanced antiplatelet effects of clopidogrel due to increased formation of clopidogrel active metabolite in the liver, where the enzyme activity levels of Cyp2c and Cyp3a were significantly elevated compared with control mice. Furthermore, the effects of CsA pretreatment on the metabolism of clopidogrel in euthymic mice were identical to those seen in athymic mice. As expected, concomitant use of Tα1 reversed all the observed effects of CsA on clopidogrel metabolism and relevant metabolic enzymes. CONCLUSIONS: T cell deficiency or suppression enhances the antiplatelet effects of clopidogrel due to the boosted metabolic activation of clopidogrel in the liver through a dramatic induction of Cyp2c and Cyp3a in mice, suggesting that the metabolism of substrate drugs of Cyp2c and Cyp3a may be enhanced by T cell impairment.


Assuntos
Inibidores da Agregação Plaquetária , Ticlopidina , Animais , Camundongos , Ativação Metabólica , Plaquetas/metabolismo , Clopidogrel/farmacologia , Citocromo P-450 CYP3A/metabolismo , Camundongos Nus , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Linfócitos T/metabolismo , Ticlopidina/farmacologia
6.
BMC Plant Biol ; 23(1): 55, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698063

RESUMO

Drought is a major abiotic stress to rice (Oryza sativa) during growth. Ideal Plant Architecture (IPA1), the first cloned gene controlling the ideal plant type in rice, has been reported to function in both ideal rice plant architecture and biotic resistance. Here, we report that the IPA1/OsSPL14, encoding a transcriptional factor, positively regulates drought tolerance in rice. The IPA1 is constitutively expressed and regulated by H2O2, abscisic acid, NaCl and polyethylene glycol 6000 treatments in rice. Furthermore, the IPA1-knockout plants showed much greater accumulation of H2O2 as measured by 3,3'-diaminobenzidine staining in leaves compared with WT plants. Yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays indicated that the IPA1 directly activates the promoter of SNAC1. Expression of SNAC1 is significantly down-regulated in IPA1 knockout plants. Further investigation indicated that the IPA1 plays a positive role in drought-stress tolerance by inducing reactive oxygen species scavenging in rice. Together, these findings indicated that the IPA1 played important roles in drought tolerance by regulating SNAC1, thus activating the antioxidant system in rice.


Assuntos
Oryza , Oryza/metabolismo , Resistência à Seca , Plantas Geneticamente Modificadas/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas
7.
J Thromb Haemost ; 21(1): 117-132, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695375

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO), a gut microbe-generated metabolite, elicits thrombotic events by enhancing platelet reactivity; however, no studies have reported the effects of TMAO on the metabolism of and response to clopidogrel. OBJECTIVES: To determine whether choline and TMAO could significantly impair metabolic activation of and platelet response to clopidogrel in choline- or TMAO-fed mice and the mechanisms involved. METHODS: Male mice were fed with vehicle control (Ctrl), TMAO, choline alone or in combination with 3,3-dimethyl-1-butanol, N-acetyl-L-cysteine, or ML385 for 14 days and then treated with Ctrl or a single oral dose of clopidogrel. Plasma TMAO, protein levels of clopidogrel-metabolizing enzymes in the liver, plasma concentrations of clopidogrel and its metabolites, and adenosine diphosphate-induced platelet aggregation and activation were measured. In addition, HepG2 cells were treated with Ctrl or TMAO alone or in combination with N-acetyl-L-cysteine, ML385, or apocynin, and CES1, reactive oxygen species (ROS), and Nrf2 protein levels were measured, respectively. RESULTS: TMAO significantly increased Ces1 protein expression and activity and clopidogrel hydrolysis in the liver as well as intracellular ROS and CES1 levels and Nrf2 nucleus translocation in HepG2 cells but decreased the formation of clopidogrel active metabolite and impaired platelet response to clopidogrel. Furthermore, concomitant use of 3,3-dimethyl-1-butanol, N-acetyl-L-cysteine, or ML385 effectively reversed choline- or TMAO-induced impairment of inhibition of platelet aggregation by clopidogrel in mice, respectively. CONCLUSIONS: Choline and TMAO impair the metabolic activation of and platelet response to clopidogrel through the activation of the NOX-dependent ROS/Nrf2/CES1 pathway, suggesting novel strategies for overcoming clopidogrel resistance from bench to bedside.


Assuntos
Colina , Fator 2 Relacionado a NF-E2 , Masculino , Animais , Camundongos , Colina/metabolismo , Clopidogrel , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Ativação Metabólica , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo
9.
Adv Mater ; 35(12): e2207895, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581586

RESUMO

2D metal oxides (2DMOs) have stimulated tremendous attention due to their distinct electronic structures and abundant surface chemistry. However, it remains a standing challenge for the synthesis of 2DMOs because of their intrinsic 3D lattice structure and ultrahigh synthesis temperature. Here, a reliable WSe2 -assisted chemical vapor deposition (CVD) strategy to grow nonlayered WO2 nanoplates with tunable thickness and lateral dimension is reported. Optical microscopy and scanning electron microscopy studies demonstrate that the WO2 nanoplates exhibit a well-faceted rhombic geometry with a lateral dimension up to the sub-millimeter level (≈135 µm), which is the largest size of 2DMO single crystals obtained by CVD to date. Scanning transmission electron microscopy studies reveal that the nanoplates are high-quality single crystals. Electrical measurements show the nanoplates exhibit metallic behavior with strong anisotropic resistance, outstanding conductivity of 1.1 × 106  S m-1 , and breakdown current density of 7.1 × 107  A cm-2 . More interestingly, low-temperature magnetotransport studies demonstrate that the nanoplates show a quantum-interference-induced weak-localization effect. The developed WSe2 -assisted strategy for the growth of WO2 nanoplates can enrich the library of 2DMO materials and provide a material platform for other property explorations based on 2D WO2 .

10.
Biopharm Drug Dispos ; 43(6): 247-254, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519186

RESUMO

As an analog of clopidogrel and prasugrel, vicagrel is completely hydrolyzed to intermediate thiolactone metabolite 2-oxo-clopidogrel (also the precursor of active thiol metabolite H4) in human intestine, predominantly by AADAC and CES2; however, other unknown vicagrel hydrolases remain to be identified. In this study, recombinant human Raf kinase inhibitor protein (rhRKIP) and pooled human intestinal S9 (HIS9) fractions and microsome (HIM) preparations were used as the different enzyme sources; prasugrel as a probe drug for RKIP (a positive control), vicagrel as a substrate drug of interest, and the rate of the formation of thiolactone metabolites 2-oxo-clopidogrel and R95913 as metrics of hydrolase activity examined, respectively. In addition, an IC50 value of inhibition of rhRKIP-catalyzed vicagrel hydrolysis by locostatin was measured, and five classical esterase inhibitors with distinct esterase selectivity were used to dissect the involvement of multiple hydrolases in vicagrel hydrolysis. The results showed that rhRKIP hydrolyzed vicagrel in vitro, with the values of Km , Vmax , and CLint measured as 20.04 ± 1.99 µM, 434.60 ± 12.46 nM/min/mg protein, and 21.69 ± 0.28 ml/min/mg protein, respectively, and that an IC50 value of locostatin was estimated as 1.24 ± 0.04 mM for rhRKIP. In addition to locostatin, eserine and vinblastine strongly suppressed vicagrel hydrolysis in HIM. It is concluded that RKIP can catalyze the hydrolysis of vicagrel in the human intestine, and that vicagrel can be hydrolyzed by multiple hydrolases, such as RKIP, AADAC, and CES2, concomitantly.


Assuntos
Hidrolases , Proteína de Ligação a Fosfatidiletanolamina , Humanos , Cloridrato de Prasugrel/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Clopidogrel , Hidrolases/metabolismo , Esterases/metabolismo , Intestinos
11.
Mol Plant ; 15(12): 1931-1946, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36321201

RESUMO

Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.


Assuntos
Oryza , Domínios de Homologia de src , Oryza/genética
12.
Life (Basel) ; 12(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36013457

RESUMO

The heterosis in hybrid rice is highly affected by the environment and hybrid weakness occurs frequently depending on the genotypes of the hybrid and its parents. Hybrid weakness was also observed in our field experiments on nine rice hybrids produced by 3 × 3 incomplete diallel crosses. Among the nine hybrids, five displayed mid-parent heterosis (MPH) for grain yield per plant, while four showed mid-parent hybrid weakness (MPHW). A sequencing analysis of transcriptomes in panicles at the seed-filling stage revealed a significant association between enhanced non-additive gene expression (NAE) and allele-specific gene expression (ASE) with hybrid weakness. High proportions of ASE genes, with most being of mono-allele expression, were detected in the four MPHW hybrids, ranging from 22.65% to 45.97%; whereas only 4.80% to 5.69% of ASE genes were found in the five MPH hybrids. Moreover, an independence test indicated that the enhancements of NAE and ASE in the MPHW hybrids were significantly correlated. Based on the results of our study, we speculated that an unfavorable environment might cause hybrid weakness by enhancing ASE and NAE at the transcriptome level.

13.
Gene ; 838: 146708, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35772655

RESUMO

The glycosyltransferase 64 (GT64) family is widely conserved in many species, including animals and plants. The functions of GT64 family genes in animals have been well characterized in the biosynthesis of extracellular heparan sulfate, whereas two GT64 members in Arabidopsis thaliana are involved in the glycosylation of plasma membrane glycosylinositol phosphorylceramides (GIPCs). GIPCs are the main components of plant sphingolipids and serve as important signal molecules in various developmental processes and stress responses. Rice (Oryza sativa), a model monocot plant, contains four GT64 members in its genome. Using phylogenetic analysis, 73 GT64s from 19 plant species were divided into three main groups. Each group can be represented by the three members in Arabidopsis and show a trend of monocot-eudicot divergence. A promoter and genomic variation analysis of GT64s in rice showed that various stress-related regulatory elements exist in their promoters, and many sequence variations were found between the two main rice subspecies, japonica and indica. Additionally, transmembrane domain and subcellular localization analyses revealed that these genes all encode membrane-bound glycosyltransferases and are localized to the Golgi apparatus. Finally, expression analysis of the four GT64 genes in rice, as assessed by quantitative real-time PCR, showed that they have distinct tissue-specific expression patterns and respond to different hormone treatments or abiotic stresses. Our results indicated that this family of genes may play a role in different stress responses and hormone signaling pathways in rice, which will provide fundamental information for further investigation of their functions in future.


Assuntos
Arabidopsis , Oryza , Animais , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hormônios/metabolismo , Família Multigênica , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
14.
Br J Pharmacol ; 179(1): 46-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415054

RESUMO

BACKGROUND AND PURPOSE: Overweight or obese patients exhibit poorer platelet responses to clopidogrel. However, the mechanisms behind this phenotype remain to be elucidated. Here, we sought to discover whether and why obesity could affect the metabolic activation of and/or platelet response to clopidogrel in obese patients and high-fat diet-induced obese mice. EXPERIMENTAL APPROACH: A post hoc stratified analysis of an observational clinical study was performed to investigate changes in residual platelet reactivity with increasing body weight in patients taking clopidogrel. Furthermore, high-fat diet-induced obese mice were used to reveal alterations in systemic exposure of clopidogrel thiol active metabolite H4, ADP-induced platelet activation and aggregation, the expression of genes involved in the metabolic activation of clopidogrel, count of circulating reticulated and mature platelets, and proliferation profiles of megakaryocytes in bone marrow. The relevant genes and potential signalling pathways were predicted and enriched according to the GEO datasets available from obese patients. KEY RESULTS: Obese patients exhibited significantly attenuated antiplatelet effects of clopidogrel. In diet-induced obese mice, systemic exposure of clopidogrel active metabolite H4 was reduced but that of its hydrolytic metabolite was increased due to down-regulation of certain P450s but up-regulation of carboxylesterase-1 in the liver. Moreover, enhanced proliferation of megakaryocytes and elevated platelet count also contributed. CONCLUSION AND IMPLICATIONS: Obesity attenuated metabolic activation of clopidogrel and increased counts of circulating reticulated and mature platelets, leading to impaired platelet responsiveness to the drug in mice, suggesting that clopidogrel dosage may need to be adjusted adequately in overweight or obese patients.


Assuntos
Plaquetas , Ticlopidina , Animais , Clopidogrel/metabolismo , Clopidogrel/farmacologia , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Sobrepeso/metabolismo , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Ticlopidina/farmacologia
15.
Life Sci ; 279: 119268, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33626394

RESUMO

AIMS: Drinking alcohol is prevalent worldwide; however, it is unknown whether alcohol could affect the antiplatelet effects of clopidogrel in patients when taking both concomitantly. This study was designed to investigate the influence of short-term standard alcohol consumption on the metabolic activation of and platelet response to clopidogrel in mice as well as the mechanisms involved. MAIN METHODS: Male C57BL/6J mice were administered with normal saline (vehicle control) or alcohol at 2 g/kg/day for 7 days, and then gavaged with vehicle control or a single dose of clopidogrel at 10 mg/kg. Inhibition of ADP-induced platelet aggregation and activation by clopidogrel, plasma concentrations of clopidogrel and its active metabolite H4, and changes in mRNA and protein expression of genes related to clopidogrel metabolism and its regulation were measured in mice pretreated with or without alcohol. KEY FINDINGS: Compared with vehicle control, alcohol pretreatment significantly reduced hydrolysis of clopidogrel as a result of significant down-regulation of Nrf2-mediated Ces1 expression (responsible for the formation of clopidogrel carboxylate), increased metabolic activation of clopidogrel due to significant up-regulation of Cyp2c (for the formation of active thiol metabolite H4), and consequently enhanced inhibition of ADP-induced platelet aggregation and activation by clopidogrel. SIGNIFICANCE: Short-term standard alcohol consumption would significantly enhance suppression of ADP-induced platelet aggregation and activation by clopidogrel through significant inhibition of Nrf2/Ces1 signaling pathway and induction of Cyp2c, suggesting that alcohol may interact with drugs that are predominantly metabolized by CES1 or CYP2C in patient care, including clopidogrel.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Clopidogrel/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Agregação Plaquetária/efeitos dos fármacos , Animais , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Agregação Plaquetária/farmacologia
16.
Biochem Pharmacol ; 183: 114313, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137324

RESUMO

Variability in P-glycoprotein (P-gp) efflux transporting activity was supposed to be involved in altered intestinal absorption and bioavailability of clopidogrel in patients; however, reliable evidence is still lacking. In this study, we sought to determine whether P-gp could play an important role in the metabolic activation of and platelet response to clopidogrel in mice. Abcb1a/1b knock-out (KO) and wild-type (WT) mice were used to evaluate differences in the intracellular accumulation of clopidogrel in the intestine, liver, and brain tissues and in systemic exposure of clopidogrel and its main metabolites as well as the mechanisms involved. Results indicated that, compared with WT mice, KO mice exhibited an 84% increase in systemic exposure of clopidogrel active thiol metabolite H4 and a 14.5% rise of suppression of ADP-induced platelet integrin αIIbß3 activation, paralleled by a 41% decrease in systemic exposure of clopidogrel due to enhanced systemic clearance. Furthermore, KO mice displayed a 45% increase in Cyp3a11 but a 23% decrease in Ces1 at their protein levels compared with WT mice. Concurrently, intracellular clopidogrel concentrations in the tissues examined did not differ significantly between KO and WT mice. We conclude that although P-gp does not transport clopidogrel and its major metabolites in mice, P-gp-deficient mice exhibit elevated formation of the active metabolite H4 and enhanced antiplatelet effect of clopidogrel through up-regulation of Cyp3a11 and down-regulation of Ces1, suggesting that P-gp activity may correlate inversely with the formation of H4 and antiplatelet efficacy of clopidogrel in clinical settings due to P-gp and CYP3A4 interplay.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Plaquetas/metabolismo , Clopidogrel/farmacologia , Citocromo P-450 CYP3A/biossíntese , Proteínas de Membrana/biossíntese , Inibidores da Agregação Plaquetária/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Plaquetas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/fisiologia
17.
Adv Mater ; 32(34): e2002392, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32686130

RESUMO

Low-dimensional perovskites have gained increasing attention recently, and engineering their material phases, structural patterning and interfacial properties is crucial for future perovskite-based applications. Here a phase and heterostructure engineering on ultrathin perovskites, through the reversible cation exchange of hybrid perovskites and efficient surface functionalization of low-dimensional materials, is demonstrated. Using PbI2 as precursor and template, perovskite nanosheets of varying thickness and hexagonal shape on diverse substrates is obtained. Multiple phases, such as PbI2 , MAPbI3 and FAPbI3 , can be flexibly designed and transformed as a single nanosheet. A perovskite nanosheet can be patterned using masks made of 2D materials, fabricating lateral heterostructures of perovskite and PbI2 . Perovskite-based vertical heterostructures show strong interfacial coupling with 2D materials. As a demonstration, monolayer MoS2 /MAPbI3 stacks give a type-II heterojunction. The ability to combine the optically efficient perovskites with versatile 2D materials creates possibilities for new designs and functionalities.

18.
Research (Wash D C) ; 2020: 1768918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637940

RESUMO

The emergence of low-dimensional nanomaterials has brought revolutionized development of magnetism, as the size effect can significantly influence the spin arrangement. Since the first demonstration of truly two-dimensional magnetic materials (2DMMs) in 2017, a wide variety of magnetic phases and associated properties have been exhibited in these 2DMMs, which offer a new opportunity to manipulate the spin-based devices efficiently in the future. Herein, we focus on the recent progress of 2DMMs and heterostructures in the aspects of their structural characteristics, physical properties, and spintronic applications. Firstly, the microscopy characterization of the spatial arrangement of spins in 2D lattices is reviewed. Afterwards, the optical probes in the light-matter-spin interactions at the 2D scale are discussed. Then, particularly, we systematically summarize the recent work on the electronic and spintronic devices of 2DMMs. In the section of electronic properties, we raise several exciting phenomena in 2DMMs, i.e., long-distance magnon transport, field-effect transistors, varying magnetoresistance behavior, and (quantum) anomalous Hall effect. In the section of spintronic applications, we highlight spintronic devices based on 2DMMs, e.g., spin valves, spin-orbit torque, spin field-effect transistors, spin tunneling field-effect transistors, and spin-filter magnetic tunnel junctions. At last, we also provide our perspectives on the current challenges and future expectations in this field, which may be a helpful guide for theorists and experimentalists who are exploring the optical, electronic, and spintronic properties of 2DMMs.

19.
BMC Plant Biol ; 20(1): 76, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059642

RESUMO

BACKGROUND: Rice ratooning has traditionally been an important component of the rice cropping system in China. However, compared with the rice of the first harvest, few studies on factors effecting ratoon rice yield have been conducted. Because ratoon rice is a one-season rice cultivated using axillary buds that germinate on rice stakes and generate panicles after the first crop's harvest, its production is mainly affected by the growth of axillary buds. The objectives of this study were to evaluate the sprouting mechanism of axillary buds to improve the ratoon rice yield. RESULTS: First, we observed the differentiation and growth dynamics of axillary buds at different nodes of Shanyou 63, and found that they differentiated from bottom to top before the heading of the mother stem, and that they developed very slowly. After heading they differentiated from top to bottom, and the ones on the top, especially the top 2nd node, developed much faster than those at the other nodes. The average length and dry weight of the axillary buds were significantly greater than those at other nodes by the yellow ripe stage, and they differentiated into pistils and stamens by 6 d after the yellow ripe stage. The morphology of vegetative organs from regenerated tillers of Shanyou 63 also suggested the superior growth of the upper buds, which was regulated by hormones, in ratoon rice. Furthermore, a comprehensive proteome map of the rice axillary buds at the top 2nd node before and after the yellow ripe stage was established, and some proteins involved in steroid biosynthesis were significantly increased. Of these, four took part in brassinosteroid (BR) biosynthesis. Thus, BR signaling may play a role in the germination of axillary buds of ratoon rice. CONCLUSIONS: The data provide insights into the molecular mechanisms underlying BR signaling, and may allow researchers to explore further the biological functions of endogenous BRs in the germination of axillary buds of ratoon rice.


Assuntos
Brassinosteroides/metabolismo , Flores/fisiologia , Germinação , Oryza/fisiologia , Transdução de Sinais
20.
Drug Metab Dispos ; 48(10): 966-971, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31900255

RESUMO

Curcumin, a major polyphenol present in turmeric, is predominantly converted to curcumin-O-glucuronide (COG) in enterocytes and hepatocytes via glucuronidation. COG is a principal metabolite of curcumin in plasma and feces. It appears that the efflux transport of the glucuronide conjugates of many compounds is mediated largely by multidrug resistance-associated protein (MRP) 3, the gene product of the ATP-binding cassette, subfamily C, member 3. However, it is currently unknown whether this was the case with COG. In this study, Mrp3 knockout (KO) and wild-type (WT) mice were used to evaluate the pharmacokinetics profiles of COG, the liver-to-plasma ratio of COG, and the COG-to-curcumin ratio in plasma, respectively. The ATP-dependent uptake of COG into recombinant human MRP3 inside-out membrane vesicles was measured for further identification, with estradiol-17ß-d-glucuronide used in parallel as the positive control. Results showed that plasma COG concentrations were extremely low in KO mice compared with WT mice, that the liver-to-plasma ratios of COG were 8-fold greater in KO mice than in WT mice, and that the ATP-dependent uptake of COG at 1 or 10 µM was 5.0- and 3.1-fold greater in the presence of ATP than in the presence of AMP, respectively. No significant differences in the Abcc2 and Abcg2 mRNA expression levels were seen between Mrp3 KO and WT mice. We conclude that Mrp3 is identified to be the main efflux transporter responsible for the transport of COG from hepatocytes into the blood. SIGNIFICANCE STATEMENT: This study was designed to determine whether multidrug resistance-associated protein (Mrp) 3 could be responsible for the efflux transport of curcumin-O-glucuronide (COG), a major metabolite of curcumin present in plasma and feces, from hepatocytes into the blood using Mrp3 knockout mice. In this study, COG was identified as a typical Mrp3 substrate. Results suggest that herb-drug interactions would occur in patients concomitantly taking curcumin and either an MRP3 substrate/inhibitor or a drug that is predominantly glucuronidated by UDP-glucuronosyltransferases.


Assuntos
Curcumina/análogos & derivados , Glucuronídeos/farmacocinética , Hepatócitos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Administração Oral , Animais , Curcumina/administração & dosagem , Curcumina/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Estradiol/farmacocinética , Glucuronídeos/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA