Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(3): 645-658, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146933

RESUMO

ATG4B is a core protein and essential for cleaving precursor MAP1LC3/LC3 or deconjugating lipidated LC3-II to drive the formation of autophagosomes. The protein stability and activity of ATG4B regulated by post-translational modification (ubiquitination) will directly affect macroautophagy/autophagy. However, the mechanism involved in ATG4B ubiquitination is largely unclear. In this study, a new E3 ligase of ATG4B, UBE3C, was identified by mass spectra. UBE3C mainly assembles K33-branched ubiquitin chains on ATG4B at Lys119 without causing ATG4B degradation. In addition, the increased ubiquitination of ATG4B caused by UBE3C overexpression inhibits autophagy flux in both normal and starvation conditions, which might be due to the reduced activity of ATG4B and ATG4B-LC3 interaction. This reduction could be reversed once the lysine 119 of ATG4B was mutated to arginine. More important, under starvation conditions the interaction between ATG4B and UBE3C apparently decreased followed by the removal of the K33-branched ubiquitin chain of ATG4B. Thus, starvation-induced autophagy could be partially suppressed by an increased ubiquitination level of ATG4B. In conclusion, our research reveals a novel modification mode of ATG4B in which UBE3C can fine tune ATG4B activity by specific ubiquitination regulating autophagy without causing ATG4B degradation.Abbreviation: ATG: autophagy-related; Baf: bafilomycin A1; CBB: Coomassie Brilliant Blue; CM: complete medium; CQ: chloroquine; GFP: green fluorescent protein; HA-Ub: HA-tagged ubiquitin; IF: immunofluorescence; IP: immunoprecipitation; K: lysine; KO: knockout; K0: all K-to-R mutant; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NC: negative control; R: arginine; WCL: whole cell lysate; WT: wild-type.


Assuntos
Autofagia , Lisina , Autofagia/fisiologia , Lisina/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Arginina/metabolismo
2.
Cell Biosci ; 12(1): 206, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36539845

RESUMO

Cysteine protease ATG4B, a key autophagy protein, is an attractive target for colorectal cancer therapy. However, ATG4B inhibitors with higher efficiency, safety, and clear mechanism are still limited. In this study, we discovered ATG4B inhibitors based on the FDA-approved drug library through FRET-based high-throughput screening and gel-based analysis. Among the nine hits, compound Ebselen showed the most potent ATG4B inhibitory activity (IC50 = 189 nM) and exhibited controllable selectivity and structural optimizable possibility against ATG4A and caspases. We then performed mass spectrometry assay and cysteine mutations to confirm that Ebselen could covalently bind to ATG4B at Cys74. Moreover, Cys292 and Cys361 instead of Cys74 are responsible for the redox-oligomerization and efficient activity inhibition of ATG4B. Ultimately through cell culture and mouse xenograft tumor models, we established the impact of Ebselen on autophagy and tumor suppression via ATG4B inhibition other than apoptosis. These results suggest that old drug Ebselen as an ATG4B inhibitor through oxidative modification may be repurposed as a promising anti-colorectal cancer drug.

3.
Redox Biol ; 52: 102284, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35349929

RESUMO

Autophagy is an evolutionarily conserved self-protecting mechanism implicated in cellular homeostasis. ATG4B plays a vital role in autophagy process via undertaking priming and delipidation of LC3. Chemical inhibitors and regulative modifications such as oxidation of ATG4B have been demonstrated to modulate autophagy function. Whether and how ATG4B could be regulated by metal ions is largely unknown. Copper is an essential trace metal served as static co-factors in redox reactions in physiology process. Excessive accumulation of copper in ATP7B mutant cells leads to pathology progression such as insoluble Mallory body (MB) in Wilson disease (WD). The clearance of MB via autophagy pathway was thought as a promising strategy for WD. Here, we discovered that copper ion instead of other ions could inhibit the activity of ATG4B followed by autophagy suppression. In addition, copper could induce ATG4B oligomers depending on cysteine oxidation which could be abolished in reduced condition. Copper also promotes the formation of insoluble ATG4B aggregates, as well as p62-and ubiquitin-positive aggregates, which is consistent with the components of MB caused by copper overload in WD cell model. Importantly, overexpression of ATG4B could partially reduce the formation of MB and rescue impaired autophagy. Taken together, our results uncovered for the first time a new damage mechanism mediated by copper and implied new insights of the crosstalk between the toxicity of copper and autophagy in the pathogenesis of WD.


Assuntos
Cobre , Proteínas Associadas aos Microtúbulos , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163026

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the fastest-growing liver disease in the world. Despite targeted agents which are needed to provide permanent benefits for patients with NAFLD, no drugs have been approved to treat NASH. Thyroid hormone is an important signaling molecule to maintain normal metabolism, and in vivo and vitro studies have shown that regulation of the 3,5,3'-triiodothyronine (T3)/ thyroid hormone receptor (TR) axis is beneficial not only for metabolic symptoms but also for the improvement of NAFLD and even for the repair of liver injury. However, the non-selective regulation of T3 to TR subtypes (TRα/TRß) could cause unacceptable side effects represented by cardiotoxicity. To avoid deleterious effects, TRß-selective thyromimetics were developed for NASH studies in recent decades. Herein, we will review the development of thyroid hormones and synthetic thyromimetics based on TR selectivity for NAFLD, and analyze the role of TR-targeted drugs for the treatment of NAFLD in the future.


Assuntos
Biomimética/métodos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores dos Hormônios Tireóideos/agonistas , Hormônios Tireóideos/farmacologia , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
5.
Front Cell Dev Biol ; 9: 685625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235149

RESUMO

Autophagy is an evolutionarily conserved catabolic process that is essential for maintaining cellular, tissue, and organismal homeostasis. Autophagy-related (ATG) genes are indispensable for autophagosome formation. ATG3 is one of the key genes involved in autophagy, and its homologs are common in eukaryotes. During autophagy, ATG3 acts as an E2 ubiquitin-like conjugating enzyme in the ATG8 conjugation system, contributing to phagophore elongation. ATG3 has also been found to participate in many physiological and pathological processes in an autophagy-dependent manner, such as tumor occurrence and progression, ischemia-reperfusion injury, clearance of pathogens, and maintenance of organelle homeostasis. Intriguingly, a few studies have recently discovered the autophagy-independent functions of ATG3, including cell differentiation and mitosis. Here, we summarize the current knowledge of ATG3 in autophagosome formation, highlight its binding partners and binding sites, review its autophagy-dependent functions, and provide a brief introduction into its autophagy-independent functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA