Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 9(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596826

RESUMO

Tibial dyschondroplasia (TD) with multiple incentives is a metabolic skeletal disease that occurs in fast-growing broilers. Perturbations in the gut microbiota (GM) have been shown to affect bone homoeostasis, but the mechanisms by which GM modulates bone metabolism in TD broilers remain unknown. Here, using a broiler model of TD, we noted elevated blood glucose (GLU) levels in TD broilers, accompanied by alterations in the pancreatic structure and secretory function and damaged intestinal barrier function. Importantly, faecal microbiota transplantation (FMT) of gut microbes from normal donors rehabilitated the GM and decreased the elevated GLU levels in TD broilers. A high GLU level is a predisposing factor to bone disease, suggesting that GM dysbiosis-mediated hyperglycaemia might be involved in bone regulation. 16S rRNA gene sequencing and short-chain fatty acid analysis revealed that the significantly increased level of the metabolite butyric acid derived from the genera Blautia and Coprococcus regulated GLU levels in TD broilers by binding to GPR109A in the pancreas. Tibial studies showed reduced expression of vascular regulatory factors (including PI3K, AKT and VEFGA) based on transcriptomics analysis and reduced vascular distribution, contributing to nonvascularization of cartilage in the proximal tibial growth plate of TD broilers with elevated GLU levels. Additionally, treatment with the total flavonoids from Rhizoma drynariae further validated the improvement in bone homoeostasis in TD broilers by regulating GLU levels through the regulation of GM to subsequently improve intestinal and pancreatic function. These findings clarify the critical role of GM-mediated changes in GLU levels via the gut-pancreas axis in bone homoeostasis in TD chickens.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Osteocondrodisplasias/terapia , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/metabolismo , Tiram , Galinhas , RNA Ribossômico 16S , Homeostase , Glucose
2.
Chem Sci ; 13(33): 9668-9677, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091909

RESUMO

Internal motions of folded proteins have been assumed to be ergodic, i.e., that the dynamics of a single protein molecule averaged over a very long time resembles that of an ensemble. Here, by performing single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular dynamics (MD) simulations of a multi-domain globular protein, cytoplasmic protein-tyrosine phosphatase (SHP2), we demonstrate that the functional inter-domain motion is observationally non-ergodic over the time spans 10-12 to 10-7 s and 10-1 to 102 s. The difference between observational non-ergodicity and simple non-convergence is discussed. In comparison, a single-strand DNA of similar size behaves ergodically with an energy landscape resembling a one-dimensional linear chain. The observed non-ergodicity results from the hierarchical connectivity of the high-dimensional energy landscape of the protein molecule. As the characteristic time for the protein to conduct its dephosphorylation function is ∼10 s, our findings suggest that, due to the non-ergodicity, individual, seemingly identical protein molecules can be dynamically and functionally different.

3.
J Biol Chem ; 296: 100538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33722610

RESUMO

The protein tyrosine phosphatase SHP2 mediates multiple signal transductions in various cellular pathways, controlled by a variety of upstream inputs. SHP2 dysregulation is causative of different types of cancers and developmental disorders, making it a promising drug target. However, how SHP2 is modulated by its different regulators remains largely unknown. Here, we use single-molecule fluorescence resonance energy transfer and molecular dynamics simulations to investigate this question. We identify a partially open, semiactive conformation of SHP2 that is intermediate between the known open and closed states. We further demonstrate a "multiple gear" regulatory mechanism, in which different activators (e.g., insulin receptor substrate-1 and CagA), oncogenic mutations (e.g., E76A), and allosteric inhibitors (e.g., SHP099) can shift the equilibrium of the three conformational states and regulate SHP2 activity to different levels. Our work reveals the essential role of the intermediate state in fine-tuning the activity of SHP2, which may provide new opportunities for drug development for relevant cancers.


Assuntos
Calgranulina A/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Piperidinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirimidinas/metabolismo , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética
4.
Cell ; 183(2): 490-502.e18, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002410

RESUMO

The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Células A549 , Animais , Criança , Pré-Escolar , Feminino , Mutação com Ganho de Função/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Células-Tronco Embrionárias Murinas , Mutação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Domínios de Homologia de src/genética
5.
Elife ; 92020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250733

RESUMO

Tau hyper-phosphorylation and deposition into neurofibrillary tangles have been found in brains of patients with Alzheimer's disease (AD) and other tauopathies. Molecular chaperones are involved in regulating the pathological aggregation of phosphorylated Tau (pTau) and modulating disease progression. Here, we report that nicotinamide mononucleotide adenylyltransferase (NMNAT), a well-known NAD+ synthase, serves as a chaperone of pTau to prevent its amyloid aggregation in vitro as well as mitigate its pathology in a fly tauopathy model. By combining NMR spectroscopy, crystallography, single-molecule and computational approaches, we revealed that NMNAT adopts its enzymatic pocket to specifically bind the phosphorylated sites of pTau, which can be competitively disrupted by the enzymatic substrates of NMNAT. Moreover, we found that NMNAT serves as a co-chaperone of Hsp90 for the specific recognition of pTau over Tau. Our work uncovers a dedicated chaperone of pTau and suggests NMNAT as a key node between NAD+ metabolism and Tau homeostasis in aging and neurodegeneration.


Assuntos
Chaperonas Moleculares/fisiologia , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/fisiologia , Proteínas tau/metabolismo , Animais , Sítios de Ligação , Drosophila , Proteínas de Choque Térmico HSP90/metabolismo , Homeostase , Humanos , Fosforilação , Sinapses/fisiologia
6.
Front Mol Neurosci ; 12: 54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886570

RESUMO

Many human neurodegenerative diseases are associated with amyloid fibril formation. Inhibition of amyloid formation is of importance for therapeutics of the related diseases. However, the development of selective potent amyloid inhibitors remains challenging. Here based on the structures of amyloid ß (Aß) fibrils and their amyloid-forming segments, we designed a series of peptide inhibitors using RosettaDesign. We further utilized a chemical scaffold to constrain the designed peptides into ß-strand conformation, which significantly improves the potency of the inhibitors against Aß aggregation and toxicity. Furthermore, we show that by targeting different Aß segments, the designed peptide inhibitors can selectively recognize different species of Aß. Our study developed an approach that combines the structure-based rational design with chemical modification for the development of amyloid inhibitors, which could be applied to the development of therapeutics for different amyloid-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA