Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6909, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134527

RESUMO

Late-stage specific and selective diversifications of peptides and proteins performed at target residues under ambient conditions are recognized to be the most facile route to various and abundant conjugates. Herein, we report an orthogonal modification of cysteine residues using alkyl thianthreium salts, which proceeds with excellent chemoselectivity and compatibility under mild conditions, introducing a diverse array of functional structures. Crucially, multifaceted bioconjugation is achieved through clickable handles to incorporate structurally diverse functional molecules. This "two steps, one pot" bioconjugation method is successfully applied to label bovine serum albumin. Therefore, our technique is a versatile and powerful tool for late-stage orthogonal bioconjugation.


Assuntos
Cisteína , Peptídeos , Soroalbumina Bovina , Cisteína/química , Peptídeos/química , Soroalbumina Bovina/química , Sais/química , Química Click/métodos , Animais , Proteínas/química , Bovinos
2.
Org Lett ; 26(22): 4767-4772, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38780227

RESUMO

A method for introducing a range of phosphonates into oligopeptides through a Michael addition reaction between dehydroalanine and phosphite is presented. The method offers a mild, cheap, and straightforward approach to peptide phosphorylation that has potential applications in chemical biology and medicinal chemistry. Moreover, the introduction of a phosphonate group into short antibacterial peptides is described to demonstrate its utility, leading to the discovery of phosphonated antibacterial peptides with potent broad-spectrum antibacterial activity.


Assuntos
Alanina , Antibacterianos , Oligopeptídeos , Organofosfonatos , Fosfitos , Organofosfonatos/química , Organofosfonatos/síntese química , Oligopeptídeos/química , Fosfitos/química , Estrutura Molecular , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Alanina/química , Alanina/análogos & derivados , Testes de Sensibilidade Microbiana , Fosforilação
3.
Biochem Pharmacol ; 225: 116269, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723723

RESUMO

Antimicrobial peptides (AMPs), which have a low probability of developing resistance, are considered the most promising antimicrobial agents for combating antibiotic resistance. Feleucin-K3 is an amphiphilic cationic AMP that exhibits broad-spectrum antimicrobial activity. In our previous research, the first phenylalanine residue was identified as the critical position affecting its biological activity. Here, a series of Feleucin-K3 analogs containing hydrophobic D-amino acids were developed, leveraging the low sensitivity of proteases to unnatural amino acids and the regulatory effect of hydrophobicity on antimicrobial activity. Among them, K-1dF, which replaced the phenylalanine of Feleucin-K3 with its enantiomer (D-phenylalanine), exhibited potent antimicrobial activity with a therapeutic index of 46.97 and MICs between 4 to 8 µg/ml against both sensitive and multidrug-resistant Acinetobacter baumannii. The introduction of D-phenylalanine increased the salt tolerance and serum stability of Feleucin-K3. Moreover, K-1dF displayed a rapid bactericidal effect, a low propensity to develop resistance, and a synergistic effect when combined with antibiotics. More importantly, it exhibited considerable or superior efficacy to imipenem against pneumonia and skin abscess infection. In brief, the K-1dF obtained by simple and effective modification strategy has emerged as a promising candidate antimicrobial agent for tackling multidrug-resistant Acinetobacter baumannii infections.


Assuntos
Acinetobacter baumannii , Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/fisiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Substituição de Aminoácidos , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/administração & dosagem , Estabilidade de Medicamentos , Feminino
4.
ACS Pharmacol Transl Sci ; 7(4): 1126-1141, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633584

RESUMO

Renal fibrosis is a complex pathological process that contributes to the development of chronic kidney disease due to various risk factors. Conservative treatment to curb progression without dialysis or renal transplantation is widely applicable, but its effectiveness is limited. Here, the inhibitory effect of the novel peptide DR3penA (DHα-(4-pentenyl)-AlaNPQIR-NH2), which was developed by our group, on renal fibrosis was assessed in cells and mice with established fibrosis and fibrosis triggered by transforming growth factor-ß1 (TGF-ß1), unilateral ureteral obstruction, and repeated low-dose cisplatin. DR3penA preserved renal function and ameliorated renal fibrosis at a dose approximately 100 times lower than that of captopril, which is currently used in the clinic. DR3penA also significantly reduced existing fibrosis and showed similar efficacy after subcutaneous or intraperitoneal injection. Mechanistically, DR3penA repressed TGF-ß1 signaling via miR-212-5p targeting of low-density lipoprotein receptor class a domain containing 4, which interacts with Smad2/3. In addition to having good pharmacological effects, DR3penA could preferentially target injured kidneys and exhibited low toxicity in acute and chronic toxicity experiments. These results unveil the advantages of DR3penA regarding efficacy and toxicity, making it a potential candidate compound for renal fibrosis therapy.

5.
Eur J Med Chem ; 264: 116001, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056301

RESUMO

The emergence and increasing prevalence of multidrug-resistant (MDR) bacteria have posed an urgent demand for novel antibacterial drugs. Currently, antimicrobial peptides (AMPs), potential novel antimicrobial agents with rare antimicrobial resistance, represent an available strategy to combat MDR bacterial infections but suffer the limitation of protease degradation. In this study, we developed a highly effective method for optimizing the stability of AMPs by introducing fluorinated sulfono-γ-AApeptides, and successfully synthesized novel Feleucin-K3-analogs. The results demonstrated that the incorporation of fluorinated sulfono-γ-AA into Feleucin-K3 effectively improved stability and afforded optimal peptides, such as CF3-K11, which exhibited 8-9 times longer half-lives than Feleucin-K3. Moreover, CF3-K11 displayed potent antimicrobial activity against clinically isolated Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), excellent biosafety, low resistance propensity, and possessed powerful antimicrobial efficacy for both local skin infection and pneumonia infection. The optimal CF3-K11 exhibited strong therapeutic potential and offered a superior approach for treating MDR bacterial infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções por Pseudomonas , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Testes de Sensibilidade Microbiana
6.
J Pharmacol Exp Ther ; 388(2): 701-714, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38129127

RESUMO

Interstitial lung diseases (ILDs) are a group of restrictive lung diseases characterized by interstitial inflammation and pulmonary fibrosis. The incidence of ILDs associated with exposure to multiple hazards such as inhaled particles, fibers, and ingested soluble chemicals is increasing yearly, and there are no ideal drugs currently available. Our previous research showed that the novel and low-toxicity peptide DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) had a strong antifibrotic effect on a bleomycin-induced murine model. Based on the druggability of DR3penA, we sought to investigate its effects on respirable particulate silicon dioxide (SiO2)- and soluble chemical paraquat (PQ)-induced pulmonary fibrosis in this study by using western blot, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), immunofluorescence, H&E and Masson staining, immunohistochemistry, and serum biochemical assays. The results showed that DR3penA alleviated the extent of fibrosis by inhibiting the expression of fibronectin and collagen I and suppressed oxidative stress and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Further study revealed that DR3penA may mitigate pulmonary fibrosis by negatively regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Unexpectedly, through the conversion of drug bioavailability under different routes of administration, DR3penA exerted antifibrotic effects equivalent to those of the positive control drug pirfenidone (PFD) at lower doses. In summary, DR3penA may be a promising lead compound for various fibrotic ILDs. SIGNIFICANCE STATEMENT: Our study verified that DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) exhibited positive antifibrotic activity in pulmonary fibrosis induced by silicon dioxide (SiO2) particles and soluble chemical paraquat (PQ) and demonstrated a low-dose advantage compared to the small-molecule drug pirfenidone (PFD). The peptide DR3penA can be further developed for the treatment of multiple fibrotic lung diseases.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Dióxido de Silício , Paraquat/toxicidade , Paraquat/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose , Bleomicina/toxicidade , Pulmão
7.
Org Lett ; 25(46): 8338-8343, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37966281

RESUMO

A visible-light mediated deoxygenative radical addition of carboxylic acids to dehydroalanines has been disclosed. The method can be used in ß-acyl alanine derivative synthesis, including those chiral and deuterated variants, and late-stage peptide modification with various functional groups, both in the homogeneous phase and on the resin in SPPS. It provides a new tool kit for rapid construction of bioactive peptide analogues, which has been demonstrated by modification of the antimicrobial peptide Feleucin-K3.


Assuntos
Ácidos Carboxílicos , Peptídeos , Alanina , Fotoquímica/métodos
8.
FASEB J ; 37(11): e23225, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855708

RESUMO

Pulmonary fibrosis (PF), which is caused by continuous alveolar epithelial cell injury and abnormal repair, is referred to as a difficult disease of the lung system by the World Health Organization due to its rapid progression, poor prognosis, and high mortality rate. However, there is still a lack of ideal therapeutic strategies. The peptide DR8 (DHNNPQIR-NH2 ), which is derived from rapeseed, exerted antifibrotic activity in the lung, liver, and kidney in our previous studies. By studying the structure-activity relationship and rational design, we introduced an unnatural hydrophobic amino acid (α-(4-pentenyl)-Ala) into DR8 and screened the novel peptide DR4penA (DHNα-(4-pentenyl)-APQIR-NH2 ), which had higher anti-PF activity, higher antioxidant activity and a longer half-life than DR8. Notably, DR4penA attenuated bleomycin- and paraquat-induced PF, and the anti-PF activity of DR4penA was equivalent to that of pirfenidone. Additionally, DR4penA suppressed the TGF-ß/Smad pathway in TGF-ß1-induced A549 cells and paraquat-induced rats. This study demonstrates that the novel peptide DR4penA is a potential candidate compound for PF therapy, and its antifibrotic activity in different preclinical models of PF provides a theoretical basis for further study.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Paraquat/efeitos adversos , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Transdução de Sinais
9.
J Pharmacol Exp Ther ; 386(3): 310-322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419684

RESUMO

Renal fibrosis is characterized by the excessive deposition of extracellular matrix that destroys and replaces the functional renal parenchyma, ultimately leading to organ failure. It is a common pathway by which chronic kidney disease can develop into end-stage renal disease, which has high global morbidity and mortality, and there are currently no good therapeutic agents available. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been indicated to be closely related to the occurrence of renal fibrosis, and its specific inhibitory peptide, autocamtide-2-related inhibitory peptide (AIP), was shown to directly bind the active site of CaMKII. In this study, we examined the effect of AIP on the progression of renal fibrosis and its possible mechanism. The results showed that AIP could inhibit the expression of the fibrosis markers fibronectin, collagen I, matrix metalloproteinase 2, and α-smooth muscle actin in vivo and in vitro. Further analysis revealed that AIP could inhibit the expression of various epithelial-to-mesenchymal transformation-related markers, such as vimentin and Snail 1, in vivo and in vitro. Mechanistically, AIP could significantly inhibit the activation of CaMKII, Smad 2, Raf, and extracellular regulated protein kinases (ERK) in vitro and in vivo and reduce the expression of transforming growth factor-ß (TGF-ß) in vivo. These results suggested that AIP could alleviate renal fibrosis by inhibiting CaMKII and blocking activation of the TGF-ß/Smad2 and RAF/ERK pathways. Our study provides a possible drug candidate and demonstrates that CaMKII is a potential pharmacological target for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: We have demonstrated that AIP significantly attenuated transforming growth factor-ß-1-induced fibrogenesis and ameliorated unilateral ureteral obstruction-induced renal fibrosis through the CaMKII/TGF-ß/Smad and CaMKII/RAF/ERK signaling pathways in vitro and in vivo. Our study provides a possible drug candidate and demonstrates that CaMKII can be a potential pharmacological target for the treatment of renal fibrosis.


Assuntos
Insuficiência Renal Crônica , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Sistema de Sinalização das MAP Quinases , Rim , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Transição Epitelial-Mesenquimal
10.
Acta Pharm Sin B ; 13(2): 722-738, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873181

RESUMO

Pulmonary fibrosis (PF) is a pathological change caused by repeated injuries and repair dysfunction of the alveolar epithelium. Our previous study revealed that the residues Asn3 and Asn4 of peptide DR8 (DHNNPQIR-NH2) could be modified to improve stability and antifibrotic activity, and the unnatural hydrophobic amino acids α-(4-pentenyl)-Ala and d-Ala were considered in this study. DR3penA (DHα-(4-pentenyl)-ANPQIR-NH2) was verified to have a longer half-life in serum and to significantly inhibit oxidative damage, epithelial-mesenchymal transition (EMT) and fibrogenesis in vitro and in vivo. Moreover, DR3penA has a dosage advantage over pirfenidone through the conversion of drug bioavailability under different routes of administration. A mechanistic study revealed that DR3penA increased the expression of aquaporin 5 (AQP5) by inhibiting the upregulation of miR-23b-5p and the mitogen-activated protein kinase (MAPK) pathway, indicating that DR3penA may alleviate PF by regulating MAPK/miR-23b-5p/AQP5. Safety evaluation showed that DR3penA is a peptide drug without obvious toxicity or acute side effects and has significantly improved safety compared to DR8. Thus, our findings suggest that DR3penA, as a novel and low-toxic peptide, has the potential to be a leading compound for PF therapy, which provides a foundation for the development of peptide drugs for fibrosis-related diseases.

11.
J Med Chem ; 66(4): 2211-2234, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36739538

RESUMO

Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Bactérias
12.
J Med Chem ; 66(2): 1254-1272, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36350686

RESUMO

The prevalence of multidrug-resistant bacterial infections has led to dramatically increased morbidity and mortality. Antimicrobial peptides (AMPs) have great potential as new therapeutic agents to reverse this dangerous trend. Herein, a series of novel AMP Feleucin-K3 analogues modified with unnatural peptidomimetic sulfono-γ-AA building blocks were designed and synthesized. The structure-activity, structure-toxicity, and structure-stability relationships were investigated to discover the optimal antimicrobial candidates. Among them, K122 exhibited potent and broad-spectrum antimicrobial activity and high selectivity. K122 had a rapid bactericidal effect and a low tendency to induce resistance. Surprisingly, K122 showed excellent effectiveness against bacterial pneumonia. For biofilm and local skin infections, K122 significantly decreased the bacterial load and improved tissue injury at a dose of only 0.25 mg/kg, which was 160 times lower than the concentration deemed to be safe for local dermal applications. In summary, K122 is an outstanding candidate for the treatment of multidrug-resistant bacteria and biofilm infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Pseudomonas aeruginosa , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
13.
Acta Pharm Sin B ; 12(5): 2443-2461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646543

RESUMO

Currently, there is still no effective curative treatment for the development of late-stage liver fibrosis. Here, we have illustrated that TB001, a dual glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) agonist with higher affinity towards GCGR, could retard the progression of liver fibrosis in various rodent models, with remarkable potency, selectivity, extended half-life and low toxicity. Four types of liver fibrosis animal models which were induced by CCl4, α-naphthyl-isothiocyanate (ANIT), bile duct ligation (BDL) and Schistosoma japonicum were used in our study. We found that TB001 treatment dose-dependently significantly attenuated liver injury and collagen accumulation in these animal models. In addition to decreased levels of extracellular matrix (ECM) accumulation during hepatic injury, activation of hepatic stellate cells was also inhibited via suppression of TGF-ß expression as well as downstream Smad signaling pathways particularly in CCl4-and S. japonicum-induced liver fibrosis. Moreover, TB001 attenuated liver fibrosis through blocking downstream activation of pro-inflammatory nuclear factor kappa B/NF-kappa-B inhibitor alpha (NFκB/IKBα) pathways as well as c-Jun N-terminal kinase (JNK)-dependent induction of hepatocyte apoptosis. Furthermore, GLP-1R and/or GCGR knock-down results represented GCGR played an important role in ameliorating CCl4-induced hepatic fibrosis. Therefore, TB001 can be used as a promising therapeutic candidate for the treatment of multiple causes of hepatic fibrosis demonstrated by our extensive pre-clinical evaluation of TB001.

14.
J Pharmacol Exp Ther ; 382(2): 100-112, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772783

RESUMO

Pulmonary fibrosis (PF), which is characterized by enhanced extracellular matrix (ECM) deposition, is an interstitial lung disease that lacks an ideal clinical treatment strategy. It has an extremely poor prognosis, with an average survival of 3-5 years after diagnosis. Our previous studies have shown that the antioxidant peptide DR8 (DHNNPQIR-NH2), which is extracted and purified from rapeseed, can alleviate PF and renal fibrosis. However, natural peptides are easily degraded by proteases in vivo, which limits their potency. We have since synthesized a series of DR8 analogs based on amino acid scanning substitution. DR7dA [DHNNPQ (D-alanine) R-NH2] is an analog of DR8 in which L-isoleucine (L-Ile) is replaced with D-alanine (D-Ala), and its half-life is better than that of DR8. In the current study, we verified that DR7dA ameliorated tumor growth factor (TGF)-ß1-induced fibrogenesis and bleomycin-induced PF. The results indicated that DR7dA reduced the protein and mRNA levels of TGF-ß1 target genes in TGF-ß1-induced models. Surprisingly, DR7dA blocked fibrosis in a lower concentration range than DR8 in cells. In addition, DR7dA ameliorated tissue pathologic changes and ECM accumulation in mice. BLM caused severe oxidative damage, but administration of DR7dA reduced oxidative stress and restored antioxidant defense. Mechanistic studies suggested that DR7dA inhibits ERK, P38, and JNK phosphorylation in vivo and in vitro All results indicated that DR7dA attenuated PF by inhibiting ECM deposition and oxidative stress via blockade of the mitogen-activated protein kinase (MAPK) pathway. Hence, compared with its parent peptide, DR7dA has higher druggability and could be a candidate compound for PF treatment in the future. SIGNIFICANCE STATEMENT: In order to improve druggability of DR8, we investigated the structure-activity relationship of it and replaced the L-isoleucine with D-alanine. We found that the stability and antifibrotic activity of DR7dA were significantly improved than DR8, as well as DR7dA significantly attenuated tumor growth factor (TGF)-ß1-induced fibrogenesis and ameliorated bleomycin-induced fibrosis by inhibiting extracellular matrix deposition and oxidative stress via blockade of the MAPK pathway, suggesting DR7dA may be a promising candidate compound for the treatment of PF.


Assuntos
Antioxidantes , Fibrose Pulmonar , Alanina/química , Angiotensina II , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Bleomicina , Fibrose , Isoleucina/química , Pulmão/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Peptídeos/química , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1
15.
Org Lett ; 24(5): 1169-1174, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34994572

RESUMO

Herein, we explored an unprecedented mild, nonirritating, conveniently available, and recyclable coupling reagent NDTP, which could activate the carboxylic acids via acyl thiocyanide and enable the rapid amide and peptide synthesis at very mild conditions. In addition, the methodology was compatible with Fmoc-SPPS, which may provide an alternative to peptide manufacturing.


Assuntos
Amidas/síntese química , Peptídeos/síntese química , Amidas/química , Ácidos Carboxílicos/química , Estrutura Molecular , Peptídeos/química , Estereoisomerismo , Tiocianatos/química
16.
Eur J Pharm Sci ; 167: 106009, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537373

RESUMO

Pulmonary fibrosis is a chronic progressive lung disease that lacks effective treatments in clinic. It is characterized by repair disorder of epithelial cells, formation of fibroblast foci as well as destruction of alveolar structure. Previously we first determined that parent peptide DR8 (DHNNPQIR-NH2) has anti-fibrotic activity in bleomycin-induced mice. In order to further improve the druggability of DR8, including anti-fibrotic activity, stability and security, the structure-activity relationship was investigated using a series of D-amino acid and alanine scanning analogs of DR8. The results indicated that peptides DR8-3D and DR8-8A exhibited potent anti-fibrotic activity and better stability. Further mechanism research revealed that DR8-3D and DR8-8A ameliorated lung fibrosis by inhibiting TGF-ß1 mediated epithelial-mesenchymal transition process and ERK1/2 signaling pathway in vitro and in vivo. Moreover, we found that anti-fibrotic activity of DR8 was closely related to the residues aspartic acid (Asp)1, histidine (His)2, proline (Pro)5 and glutamine (Gln)6, which suggested that the position of residues asparagine (Asn)3, asparagine (Asn)4, isoleucine (Ile)7 and arginine (Arg)8 could be further modified to optimized its anti-fibrotic effect. Therefore, we consider that DR8-3D and DR8-8A not only could be used as a potential leading compound for the treatment of bleomycin-induced lung fibrosis but also laid a foundation for the development of new anti-fibrotic drugs.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Animais , Bleomicina , Transição Epitelial-Mesenquimal , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo
17.
Biomolecules ; 11(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069651

RESUMO

The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it was found that the fourth residue of Feleucin-K3 is important for antimicrobial activity. After α-(4-pentenyl)-Ala was introduced into this position, both the antimicrobial activity and stability were greatly improved. Herein, to improve the limitations of Feleucin-K3, this unnatural amino acid was further introduced into different positions of Feleucin-K3. Among these synthetic Feleucin-K3 analogs, the N-terminal-substituted analog Feleucin-K65 (K65) and C-terminal-substituted analog Feleucin-K70 (K70) had preferable antimicrobial activity. In particular, their antimicrobial activities against multidrug-resistant bacteria were more potent than that of antibiotics. The stabilities of these peptides in salt and serum environments were improved compared with those of Feleucin-K3. In addition, these analogs had low hemolytic activity and AMR. More importantly, they effectively inhibited biofilm formation and exhibited considerable efficacy compared with traditional antibiotics against biofilm infection caused by methicillin-resistant Staphylococcus aureus (MRSA). In antimicrobial mechanism studies, K65 and K70 mainly permeated the outer membrane and depolarized the cytoplasmic membrane, resulting in cellular component leakage and cell death. In summary, analogs K65 and K70 are potential antimicrobial alternatives to solve the antibiotic crisis.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Alanina/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Estabilidade de Medicamentos , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Sais/química , Soro/química
18.
ACS Infect Dis ; 7(6): 1619-1637, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33829758

RESUMO

With the aim of tackling the increasingly serious antimicrobial resistance and improving the clinical potential of AMPs, a facile de novo strategy was adopted in this study, and a series of new peptides comprising repeating unit (WRX)n (X represents I, L, F, W, and K; n = 2, 3, 4, or 5) and amidation at C-terminus were designed. Most of the newly designed peptides exhibited a broad range of excellent antimicrobial activities against various bacteria, especially difficult-to-kill multidrug-resistant bacteria clinical isolates. Among (WRK)4 and (WRK)5, with n = 4 and n = 5 of repeating unit WRK, the highest selectivity for anionic bacterial membranes over a zwitterionic mammalian cell membrane is presented with strong antimicrobial potential and low toxicity. Additionally, both (WRK)4 and (WRK)5 emerged with fast killing speed and low tendency of resistance in sharp contrast to the conventional antibiotics ciprofloxacin, gentamicin, and imipenem, as well as having antimicrobial activity through multiple mechanisms including a membrane-disruptive mechanism and an intramolecular mechanism (nucleic acid leakage, DNA binding and ROS generation) characterized by a series of assays. Furthermore, (WRK)4 exerted impressive therapeutic effects in vivo similarly to polymyxin B but displayed much lower toxicity in vivo than polymyxin B. Taken together, the newly designed peptides (WRK)4 and (WRK)5 presented tremendous potential as novel antimicrobial candidates in response to the growing antimicrobial resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Animais , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros
20.
Acta Pharm Sin B ; 11(1): 100-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532183

RESUMO

The antimicrobial peptide APKGVQGPNG (named YD), a natural peptide originating from Bacillus amyloliquefaciens CBSYD1, exhibited excellent antibacterial and antioxidant properties in vitro. These characteristics are closely related to inflammatory responses which is the central trigger for liver fibrosis. However, the therapeutic effects of YD against hepatic fibrosis and the underlying mechanisms are rarely studied. In this study, we show that YD improved liver function and inhibited the progression of liver fibrosis by measuring the serum transaminase activity and the expression of α-smooth muscle actin and collagen I in carbon tetrachloride-induced mice. Then we found that YD inhibited the level of miR-155, which plays an important role in inflammation and liver fibrosis. Bioinformatics analysis and luciferase reporter assay indicate that Casp12 is a new target of miR-155. We demonstrate that YD significantly decreases the contents of inflammatory cytokines and suppresses the NF-κB signaling pathway. Further studies show that transfection of the miR-155 mimic in RAW264.7 cells partially reversed the YD-mediated CASP12 upregulation, the downregulated levels of inflammatory cytokines, and the inactivation of the NF-κB pathways. Collectively, our study indicates that YD reduces inflammation through the miR-155-Casp12-NF-κB axis during liver fibrosis and provides a promising therapeutic candidate for hepatic fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA