Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 17(3): 596-602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721520

RESUMO

AIM: To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty (SLAK) with corneal crosslinking (CXL) on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis (FS-LASIK). METHODS: A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo. The lenticules were collected from patients undertaking small incision lenticule extraction (SMILE) for the correction of myopia. Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength. RESULTS: All surgeries were conducted successfully with no significant complications. Their best corrected visual acuity (BCVA) ranged from 0.05 to 0.8-2 before surgery. The pre-operational total corneal thickness ranged from 345-404 µm and maximum keratometry (Kmax) ranged from 50.8 to 86.3. After the combination surgery, both the corneal keratometry (range 55.9 to 92.8) and total corneal thickness (range 413-482 µm) significantly increased. Four out of 5 patients had improvement of corneal biomechanical parameters (reflected by stiffness parameter A1 in Corvis ST). However, 3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze. Despite the onset of corneal edema right after SLAK, the corneal topography and thickness generally stabilized after 3mo. CONCLUSION: SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia. Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.

3.
Insects ; 10(6)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212973

RESUMO

Chemosensory systems play an important role in insect behavior, and some key associated genes have potential as novel targets for pest control. Cacopsylla chinensis is an oligophagous pest and has become one of the main pests of pear trees, but little is known about the molecular-level means by which it locates its hosts. In this study, we assembled the head transcriptome of C. chinensis using Illumina sequencing, and 63,052 Unigenes were identified. A total of 36 candidate chemosensory genes were identified, including five different families: 12 odorant binding proteins (OBPs), 11 chemosensory proteins (CSPs), 7 odorant receptors (ORs), 4 ionotropic receptors (IRs), and 2 gustatory receptors (GRs). The number of chemosensory gene families is consistent with that found in other Hemipteran species, indicating that our approach successfully obtained the chemosensory genes of C. chinensis. The tissue expression of all genes using quantitative real-time PCR (qRT-PCR) found that some genes displayed male head, female head, or nymph-biased specific/expression. Our results enrich the gene inventory of C. chinensis and provide valuable resources for the analysis of the functions of some key genes. This will help in developing molecular targets for disrupting feeding behavior in C. chinensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA