Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Gene ; 908: 148296, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38378131

RESUMO

Dysregulated circular RNAs (circRNAs) are significantly related with tumor initiation and progression. However, biological activity and potential molecular mechanism of circRNAs in gastric cancer (GC) deserve further exploration. We carried out total RNA sequencing and acquired the expression profiles of circRNAs. Quantitative real-time PCR as well as RNA in situ hybridization helped to validate circ_0000119 dysregulation. Various in vitro experiments were utilized to investigate the biological activities of circ_0000119 in GC, and the clinical relation of circ_0000119 in vivo was identified through nude mouse xenograft models. Finally, the molecular mechanism of circ_0000119 was clarified via luciferase assays, western blot, and rescue experiments. Compared with adjacent normal tissues, the study found an increase in the expression of circ_0000119 as well as its host linear gene MAN1A2 in GC tissues. Circ_0000119 overexpression promoted proliferation and migration of GC cells in vitro and in vivo, whereas circ_0000119 suppression had the opposite effect. Mechanistically, circ_0000119 sponged miR-502-5p which played an inhibitory role in tumors. Furthermore, we found that miR-502-5p alleviated GC progression through targeting MTBP and downregulating its expression at mRNA and protein levels. In conclusion, our findings reveal a new regulatory mechanism for circ_0000119, which sponges the miR-502-5p, suppresses MTBP expression, and finally promotes GC progression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Camundongos , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/patologia , RNA Mensageiro , Transformação Celular Neoplásica , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas de Transporte
2.
J Transl Med ; 21(1): 77, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737782

RESUMO

BACKGROUND: Chronic inflammation is a well-known risk factor for the development of gastric cancer (GC). Nevertheless, the molecular mechanisms underlying inflammation-related GC progression are incompletely defined. METHODS: Bioinformatic analysis was performed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the expression of miR-26b-5p in GC cells and tissues was validated by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined through Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and tumor xenografts. Correlation between miR-26b-5p and Cyclin dependent kinase 8 (CDK8) or Phosphodiesterase 4B (PDE4B) was analyzed by dual-luciferase reporter assays, qRT-PCR, and Western blot. The effect of miR-26b-5p on the Signal transducer and activator of transcription 3 (STAT3) pathway was investigated using Western blot, immunofluorescence (IF), and immunohistochemistry (IHC). The impact of STAT3 on miR-26b-5p was determined by dual-luciferase reporter assays and qRT-PCR. RESULTS: The expression of miR-26b-5p was significantly downregulated in Helicobacter Pylori (H. pylori)-infected GC cells. The decreased expression of miR-26b-5p was also detected in GC cells and tissues compared to normal gastric epithelium cells (GES1) and normal adjacent gastric tissues. The low expression of miR-26b-5p promoted GC proliferation in vitro and in vivo and was related to the poor outcome of GC patients. In terms of mechanism, miR-26b-5p directly targeted PDE4B and CDK8, resulting in decreased phosphorylation and nuclear translocation of STAT3, which was associated with the regulation of GC proliferation by miR-26b-5p. Notably, miR-26b-5p was transcriptionally suppressed by STAT3, thus forming the miR-26b-5p-PDE4B/CDK8-STAT3 positive feedback loop. CONCLUSION: The newly identified miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop plays an important role in inflammation-related GC progression and may serve as a promising therapeutic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Retroalimentação , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Animais
3.
Gastric Cancer ; 26(2): 169-186, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36284068

RESUMO

BACKGROUND: LIN28B plays a critical role in the Warburg effect. However, its underlying mechanism remains elusive. Recently, it has been reported that LIN28B could collaborate with IGF2BP3, which can bind to m6A-modified c-MYC transcripts. Therefore, this study investigated if LIN28B recognises methylated c-MYC mRNA to promote the Warburg effect in gastric cancer. METHODS: Effects of LIN28B on gastric cancer were confirmed in vitro and in vivo. On the basis of bioinformatics analysis, the association between LIN28B and c-MYC mRNA was shown using RNA immunoprecipitation (RIP) and luciferase reporter assays. The role of m6A was identified by RNA pull-down assays. We further performed RIP-seq to search for long non-coding RNAs (lncRNAs) participating in the LIN28B binding process. Chromatin immunoprecipitation was used to show the impact of c-MYC on transcription of LIN28B and lncRNAs. RESULTS: LIN28B was identified to stabilize c-MYC mRNA by recognizing m6A. Furthermore, the interaction between c-MYC mRNA and LIN28B is speculated to be supported by LOC101929709, which binds to both LIN28B and IGF2BP3. Functional experiments revealed that LOC101929709 promotes the proliferation, migration and glycolysis of gastric cancer. Mechanistically, LOC101929709 enriched in the cytoplasm helps LIN28B stabilize c-MYC mRNA. Moreover, c-MYC promoted the transcription of both LOC101929709 and LIN28B. Additionally, LOC101929709 also activated the PI3K/AKT pathway. CONCLUSIONS: The c-MYC/LOC101929709/LIN28B axis promotes aerobic glycolysis and tumour progression. Thus, LOC101929709 can be a novel potential target for gastric cancer treatment.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , RNA Mensageiro , RNA Longo não Codificante/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
4.
Clin Transl Med ; 12(5): e780, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522909

RESUMO

BACKGROUND: Cisplatin resistance is the main cause of poor clinical prognosis in patients with gastric cancer (GC). Yet, the exact mechanism underlying cisplatin resistance remains unclear. Recent studies have suggested that exocrine miRNAs found in the tumor microenvironment participate in tumor metastasis and drug resistance. METHODS: Exosomes isolated from BGC823 and BGC823/DDP culture medium were characterized by transmission electron microscopy and differential ultracentrifugation, and miRNA expression profiles of BGC823 and BGC823/DDP cells derived exosomes were analyzed using miRNA microarray. In vivo and in vitro assays were used to identify roles of exosomal miR-769-5p and clarify the mechanism of exosomal miR-769-5p regulated the crosstalk between sensitive and resistant GC cells. RESULTS: In this study, we found that cisplatin-resistant GC cells communicated with the tumor microenvironment by secreting microvesicles. MiR-769-5p was upregulated in GC tissues and enriched in the serum exosomes of cisplatin-resistant patients. The biologically active miR-769-5p could be integrated into exosomes and delivered to sensitive cells, spreading cisplatin resistance. Underlying cellular and molecular mechanism was miR-769-5p targeting CASP9, thus inhibiting the downstream caspase pathway and promoting the degradation of the apoptosis-related protein p53 through the ubiquitin-proteasome pathway. Targeting miR-769-5p with its antagonist to treat cisplatin-resistant GC cells can restore the cisplatin response, confirming that exosomal miR-769-5p can act as a key regulator of cisplatin resistance in GC. CONCLUSIONS: These findings indicate that exosome-transmitted miR-769-5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53. These findings reveal exosomal miR-769-5p derived from drug-resistant cells can be used as a potential therapeutic predictor of anti-tumor chemotherapy to enhance the effect of anti-cancer chemotherapy, which provides a new treatment option for GC.


Assuntos
Exossomos , MicroRNAs , Neoplasias Gástricas , Caspase 9/genética , Caspase 9/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Humanos , MicroRNAs/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/genética
5.
Cell Death Discov ; 8(1): 235, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487914

RESUMO

Systemic chemotherapy with multiple drug regimens is the main therapy option for advanced gastric cancer (GC) patients. However, many patients develop relapse soon. Here, we evaluated the therapeutic potential of targeting interleukin-8 (IL8) to overcome resistance to chemotherapy in advanced GC. RNA sequencing revealed crucial molecular changes after chemotherapy resistance, in which the expression of IL8 was significantly activated with the increase in drug resistance. Subsequently, the clinical significance of IL8 expression was determined in GC population specimens. IL8-targeted by RNA interference or reparixin reversed chemotherapy resistance with limited toxicity in vivo and vitro experiments. Sequential treatment with first-line, second-line chemotherapy and reparixin inhibited GC growth, reduced toxicity and prolonged survival. Collectively, our study provides a therapeutic strategy that targeting IL8 as a sequential therapy after chemotherapy resistance in advanced GC.

6.
Cancers (Basel) ; 13(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34503246

RESUMO

There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.

7.
Biomed Pharmacother ; 137: 111314, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581649

RESUMO

Circulating tumor cells (CTCs) are viewed as pro-metastasis precursors shed from primary tumors or metastatic sites. The phenotypic and molecular heterogeneity of CTCs is associated with breast cancer progression and prognosis. Therefore, we divided CTCs into several subtypes according to their differences in biomarker status, epithelial/mesenchymal phenotype, aggregation status, and other factors to summarize their characteristics. Considering that the organ-specific metastasis is a hallmark of breast cancer, we adopted the "seed and soil" model to further analyze the relationship between the heterogeneity of CTCs and the organotropism of breast cancer. We speculated that CTCs might not only develop their genetic potential but communicate with surroundings, including chemokine systems, hemocytes, and extracellular matrix components, to regulate the organ-specific metastases of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias da Mama/genética , Progressão da Doença , Feminino , Humanos , Metástase Neoplásica , Prognóstico
8.
Mol Ther Nucleic Acids ; 22: 382-395, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230443

RESUMO

Long noncoding RNAs (lncRNAs), genomic "dark matter," are deeply involved in diverse biological processes. The lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is a highly participatory lncRNA; however, its roles in gastric cancer (GC) remain largely unexplored. Here, we demonstrated that the expression of NEAT1 was significantly increased and negatively correlated with prognosis in GC. Subsequent experiments confirmed that KLF5 can induce NEAT1 expression by binding to the NEAT1 promoter region. Further experiments revealed that NEAT1 silencing significantly suppressed cell proliferation both in vitro and in vivo and induced apoptosis. We used mRNA sequencing (mRNA-seq) to identify the preferentially affected genes linked to cell proliferation in cells with NEAT1 knockdown. Mechanistically, NEAT1 bound BRG1 (SMARCA4) directly, modulating H3K27me3 and H3K4me3 in the GADD45A promoter to regulate GADD45A-dependent G2/M cell cycle progression. In addition, BRG1 was significantly upregulated and correlated with outcomes in GC; moreover, it promoted cell proliferation both in vitro and in vivo. Taken together, our data support the importance of NEAT1 in promoting GC tumorigenesis and indicate that NEAT1 might be a diagnostic and therapeutic target in GC.

9.
Mol Ther Nucleic Acids ; 22: 766-778, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230474

RESUMO

Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are dysregulated in diverse tumors and take a pivotal role in modulating biological processes. In our study, a decreased expression level of LINC00675 in gastric cancer (GC) was first determined by data from The Cancer Genome Atlas (TCGA) and was identified using specimens from GC patients. Then, in vitro and in vivo functional experiments elaborated that LINC00675 could suppress cell proliferation and migration in GC. Multiple differentially expressed genes (DEGs) in LINC00675-overexpressing cells were identified through RNA sequencing analysis. An RNA-binding protein immunoprecipitation (RIP) assay was conducted to reveal that LINC00675 competitively bound with lysine-specific demethylase 1 (LSD1). A coimmunoprecipitation (coIP) assay indicated that LINC00675 overexpression may strengthen the binding of LSD1 and H3K4me2, whereas the chromatin immunoprecipitation (ChIP) assay results verified lower expression of H3K4me2 at the sprouty homolog 4 (SPRY4) promoter region. Together, our research identified that LINC00675 was remarkably downregulated in GC tissues and cells relative to nontumor tissues and cells. LINC00675 could repress GC tumorigenesis and metastasis via competitively binding with LSD1 and intensifying the binding of LSD1 and its target H3K4me2. Importantly, this contributed to attenuated binding of H3K4me2 at the promoter region of oncogene SPRY4 and suppressed SPRY4 transcription, thus suppressing GC cell proliferation and migration.

10.
Mol Cancer ; 19(1): 112, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600329

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play important regulatory roles in the development of various cancers. However, biological functions and the underlying molecular mechanism of circRNAs in gastric cancer (GC) remain obscure. METHODS: Differentially expressed circRNAs were identified by RNA sequencing. The biological functions of circSHKBP1 in GC were investigated by a series of in vitro and in vivo experiments. The expression of circSHKBP1 was evaluated using quantitative real-time PCR and RNA in situ hybridization, and the molecular mechanism of circSHKBP1 was demonstrated by western blot, RNA pulldown, RNA immunoprecipitation, luciferase assays and rescue experiments. Lastly, mouse xenograft and bioluminescence imaging were used to exam the clinical relevance of circSHKBP1 in vivo. RESULTS: Increased expression of circSHKBP1(hsa_circ_0000936) was revealed in GC tissues and serum and was related to advanced TNM stage and poor survival. The level of exosomal circSHKBP1 significantly decreased after gastrectomy. Overexpression of circSHKBP1 promoted GC cell proliferation, migration, invasion and angiogenesis in vitro and in vivo, while suppression of circSHKBP1 plays the opposite role. Exosomes with upregulated circSHKBP1 promoted cocultured cells growth. Mechanistically, circSHKBP1 sponged miR-582-3p to increase HUR expression, enhancing VEGF mRNA stability. Moreover, circSHKBP1 directly bound to HSP90 and obstructed the interaction of STUB1 with HSP90, inhibiting the ubiquitination of HSP90, resulting in accelerated GC development in vitro and in vivo. CONCLUSION: Our findings demonstrate that exosomal circSHKBP1 regulates the miR-582-3p/HUR/VEGF pathway, suppresses HSP90 degradation, and promotes GC progression. circSHKBP1 is a promising circulating biomarker for GC diagnosis and prognosis and an exceptional candidate for further therapeutic exploration.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Exossomos/genética , Proteínas de Choque Térmico HSP90/metabolismo , MicroRNAs/genética , RNA Circular/genética , Neoplasias Gástricas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Proteína Semelhante a ELAV 1/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Proteólise , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Ther Nucleic Acids ; 21: 108-120, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32516734

RESUMO

Piwi-interacting RNAs (piRNAs) are a novel type of small noncoding RNAs, which are 26-30 nt in length and bind to Piwi proteins. These short RNAs were originally discovered in germline cells and are considered as key regulators for germline maintenance. A growing body of evidence has now extended our views into piRNA biological significance showing that they can also regulate gene expression in somatic cells through transposon silencing, epigenetic programming, DNA rearrangements, mRNA turnover, and translational control. Mounting studies have revealed that the dysregulation of piRNAs may cause epigenetic changes and contribute to diverse diseases. This review illustrates piRNA biogenesis, mechanisms behind piRNA-mediated gene regulation, and changes of piRNAs in different diseases, especially in cancers.

12.
Cell Death Dis ; 11(3): 169, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139670

RESUMO

The positive results of the apatinib phase III trial have cast new light on treatment for patients with advanced gastric cancer (GC). However, in terms of safety, apatinib toxicities may lead to a dose modification or treatment interruption. Therefore, proper intervention is urgently needed to help patients benefit from apatinib treatment. In this study, we found that apatinib promoted autophagy activation via upregulation of ATG7 expression and autophagy inhibition enhanced apatinib-induced apoptosis. With microRNA and circular RNA-sequencing analyses of GC xenograft models, we demonstrated that circRACGAP1 functioned as an endogenous sponge for miR-3657 to inhibit its activity and further upregulate ATG7 expression. Silencing of circRACGAP1 inhibited apatinib-induced autophagy, which was rescued by miR-3657. Moreover, knockdown of circRACGAP1 sensitized GC cells to apatinib via autophagy inhibition in vitro and in vivo. These findings provided the first evidence that the circRACGAP1-miR-3657-ATG7 axis mediates a novel regulatory pathway critical for the regulation of apatinib sensitivity in GC. Thus, specific blockage of circRACGAP1 may be a potential therapeutic strategy to reduce the toxicities of apatinib and enhance its therapeutic effect in human GC.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , RNA Circular/genética , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/genética , Estômago/patologia
13.
Mol Cancer ; 18(1): 157, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711497

RESUMO

AIM: Clinical resistance is a complex phenomenon in major human cancers involving multifactorial mechanisms, and hypoxia is one of the key components that affect the cellular expression program and lead to therapy resistance. The present study aimed to summarize the role of hypoxia in cancer therapy by regulating the tumor microenvironment (TME) and to highlight the potential of hypoxia-targeted therapy. METHODS: Relevant published studies were retrieved from PubMed, Web of Science, and Embase using keywords such as hypoxia, cancer therapy, resistance, TME, cancer, apoptosis, DNA damage, autophagy, p53, and other similar terms. RESULTS: Recent studies have shown that hypoxia is associated with poor prognosis in patients by regulating the TME. It confers resistance to conventional therapies through a number of signaling pathways in apoptosis, autophagy, DNA damage, mitochondrial activity, p53, and drug efflux. CONCLUSION: Hypoxia targeting might be relevant to overcome hypoxia-associated resistance in cancer treatment.


Assuntos
Hipóxia/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Autofagia , Biomarcadores , Linhagem Celular Tumoral , Dano ao DNA , Gerenciamento Clínico , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Humanos , Hipóxia/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/etiologia , Neoplasias/terapia , Neovascularização Patológica/metabolismo , Resultado do Tratamento , Microambiente Tumoral/genética
14.
Mol Ther Nucleic Acids ; 13: 233-243, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30317163

RESUMO

MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.

15.
Cell Physiol Biochem ; 47(1): 245-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768262

RESUMO

BACKGROUND/AIMS: MicroRNAs regulate a wide range of biological processes of non-small cell lung cancer (NSCLC). Although miR-598 has been reported to act as a suppressor in osteosarcoma and colorectal cancer, the physiological function of miR-598 in NSCLC remains unknown. In this study, the role of miR-598 in NSCLC was investigated. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to estimate the expression of miR-598 and Derlin-1 (DERL1) in both NSCLC tissues and cell lines. Immunohistochemistry (IHC) analyzed the association between the miR-598 expression and epithelial-mesenchymal transition (EMT) hallmark genes (E-cadherin, Vimentin) by staining the tumors representative of the high- and low-expression groups. The effect of miR-598 and DERL1 on invasion and migration was determined in vitro using transwell and wound-healing assays. The molecular mechanism underlying the relevance between miR-598 and DERL1 was elucidated by luciferase assay and Western blot. Western blot assessed the expression levels of EMT hallmark genes in cell lines. Xenograft tumor formation assay was conducted as an in vivo experiment. RESULTS: In this study, a relatively low level of miR-598 and high DERL1 expressions were found in NSCLC specimens and cell lines. IHC results established a positive correlation between the miR-598 expression and E-cadherin and a negative with Vimentin. DERL1 was verified as a direct target of miR-598 by luciferase assay. In vitro, the over-expression of miR-598 negatively regulated DERL1 and EMT for the suppression of invasion and migration. In vivo, the over-expression of miR-598 could inhibit tumor cell metastasis in NSCLC. CONCLUSIONS: These findings for the first time revealed that miR-598, as a tumor suppressor, negatively regulate DERL1 and EMT to suppress the invasion and migration in NSCLC, thereby putatively serving as a novel therapeutic target for NSCLC clinical treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA