Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410734, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958047

RESUMO

Since the discovery in 2000, conversion-type materials have emerged as a promising negative-electrode candidate for next-generation batteries with high capacity and tunable voltage, limited by low reversibility and severe voltage hysteresis. Heterogeneous construction stands out as a cost-effective and efficient approach to reducing reaction barriers and enhancing energy density. However, the second term introduced by conventional heterostructure inevitably complicates the electrochemical analysis and poses great challenges to harvesting systematic insights and theoretical guidance. A model cell is designed and established herein for the conversion reactions between Na and TMSA-SnO2, where TMSA-SnO2 represents single atom modification of eight different 3d transition elements (V, Cr, Mn, Fe, Co, Ni, Cu or Zn). Such a model unit fundamentally eliminates the interference from the second phase and thus enables independent exploration of activation manifestations of the heterogeneous architecture. For the first time, a thermodynamically dependent catalytic effect is proposed and verified through statistical data analysis. The mechanism behind the unveiled catalytic effect is further elucidated by which the active d orbitals of transition metals weaken the surface covalent bonds and lower the reaction barriers. This research provides both theoretical insights and practical demonstrations of the advanced heterogeneous electrodes.

2.
Nat Commun ; 15(1): 2556, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519497

RESUMO

Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.

3.
Small ; 19(33): e2301436, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078904

RESUMO

The development of fast charging materials offers a viable solution for large-scale and sustainable energy storage needs. However, it remains a critical challenge to improve the electrical and ionic conductivity for better performance. Topological insulator (TI), a topological quantum material that has attracted worldwide attention, hosts unusual metallic surface states and consequent high carrier mobility. Nevertheless, its potential in promising high-rate charging capability has not been fully realized and explored. Herein, a novel Bi2 Se3 -ZnSe heterostructure as excellent fast charging material for Na+ storage is reported. Ultrathin Bi2 Se3 nanoplates with rich TI metallic surfaces are introduced as an electronic platform inside the material, which greatly reduces the charge transfer resistance and improves the overall electrical conductivity. Meanwhile, the abundant crystalline interfaces between these two selenides promote Na+ migration and provide additional active sites as well. As expected, the composite delivers the excellent high-rate performance of 360.5 mAh g-1 at 20 A g-1 and maintains its electrochemical stability of 318.4 mAh g-1 after 3000 long cycles, which is the record high for all reported selenide-based anodes. This work is anticipated to provide alternative strategies for further exploration of topological insulators and advanced heterostructures.

4.
Talanta ; 220: 121352, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928390

RESUMO

Metal-organic framework materials (MOFs) are highly promising materials for biomedical applications owing to high porosity, adjustable pore structure and high loading capacity. In this paper, we herein reported a novel UiO-66-NH2 MOF-based ratiometric fluorescent probe for the high sensitive detection of dopamine and reduced glutathione. Light-emitting metal-organic framework materials UiO-66-NH2 MOF with a fluorescence emission wavelength of 450 nm was synthesized by a simple hydrothermal synthesis. Dopamine could self-oxidize in polyethyleneimine (PEI) solution to form copolymer (PDA-PEI), which can emit yellow-green fluorescence at 530 nm. PDA-PEI can quench the fluorescence of UiO-66-NH2 MOF via FRET and the fluorescence intensity of PDA-PEI at 530 nm is increasing. Due to the reductive properties of glutathione, the formation of PDA-PEI could be blocked and the fluorescence of the UiO-66-NH2 MOF could be restored. Therefore, dopamine and reduced glutathione could be detected simultaneously via monitoring the ratiometric fluorescence intensity (I530/I450). The ratiometric fluorescent method showed good linearity curve with the concentration of dopamine in the range of 4-50 µM and with the concentration of reduced glutathione in the range of 1-70 µM. Furthermore, the ratiometric fluorescent method had a low detection limit for DA (0.68 µM) and GSH (0.57 µM), and was successfully applied for DA and GSH determination in human serum.


Assuntos
Corantes Fluorescentes , Estruturas Metalorgânicas , Dopamina , Glutationa , Humanos , Espectrometria de Fluorescência
5.
Nat Commun ; 11(1): 3426, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647265

RESUMO

The unequal distribution of volcanic products between the Earth-facing lunar side and the farside is the result of a complex thermal history. To help unravel the dichotomy, for the first time a lunar landing mission (Chang'e-4, CE-4) has targeted the Moon's farside landing on the floor of Von Kármán crater (VK) inside the South Pole-Aitken (SPA). We present the first deep subsurface stratigraphic structure based on data collected by the ground-penetrating radar (GPR) onboard the Yutu-2 rover during the initial nine months exploration phase. The radargram reveals several strata interfaces beneath the surveying path: buried ejecta is overlaid by at least four layers of distinct lava flows that probably occurred during the Imbrium Epoch, with thicknesses ranging from 12 m up to about 100 m, providing direct evidence of multiple lava-infilling events that occurred within the VK crater. The average loss tangent of mare basalts is estimated at 0.0040-0.0061.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA