Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Food Chem ; 450: 139335, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38642533

RESUMO

Laotan Suancai, a popular traditional Chinese fermented vegetable, is manufactured in the industry via four fermentation rounds. However, the differences in flavor quality of Laotan Suancai from the four fermentation rounds and the causes of this variation remain unclear. Metabolome analysis indicated that the different content of five taste compounds and 31 aroma compounds caused the differences in flavor quality among the variated fermentation rounds of Laotan Suancai. Amplicon sequencing indicated that the microbial succession exhibited a certain pattern during four fermentation rounds and further analysis unveiled that organic acids drove the microbiota shift to more acid-resistant populations. Spearman correlation analysis highlighted that seven core microbes may be involved in the formation of differential flavor and the corresponding metabolic pathways were reconstructed by function prediction. Our findings offer a novel perspective on comprehending the deterioration of flavor quality across the fermentation rounds of Laotan Suancai.

2.
Foods ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672913

RESUMO

Acid hydrolysis serves as the primary method for determining the monosaccharide composition of polysaccharides. However, inappropriate acid hydrolysis conditions may catalyze the breakdown of monosaccharides such as fructans (Fru), generating non-sugar by-products that affect the accuracy of monosaccharide composition analysis. In this study, we determined the monosaccharide recovery rate and non-sugar by-product formation of inulin-type fructan (ITF) and Fru under varied acid hydrolysis conditions using HPAEC-PAD and UPLC-Triple-TOF/MS, respectively. The results revealed significant variations in the recovery rate of Fru within ITF under different hydrolysis conditions, while glucose remained relatively stable. Optimal hydrolysis conditions for achieving a relatively high monosaccharide recovery rate for ITF entailed 80 °C, 2 h, and 1 M sulfuric acid. Furthermore, we validated the stability of Fru during acid hydrolysis. The results indicated that Fru experienced significant degradation with an increasing temperature and acid concentration, with a pronounced decrease observed when the temperature exceeds 100 °C or the H2SO4 concentration surpasses 2 M. Finally, three common by-products associated with Fru degradation, namely 5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, and furfural, were identified in both Fru and ITF hydrolysis processes. These findings revealed that the degradation of Fru under acidic conditions was a vital factor leading to inaccuracies in determining the Fru content during ITF monosaccharide analysis.

3.
Food Funct ; 15(9): 4874-4886, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38590277

RESUMO

Lactiplantibacillus plantarum NCUH001046 (LP)-fermented tomatoes exhibited the potential to alleviate obesity in our previous study. This subsequent study further delves deeper into the effects of LP fermentation on the physicochemical properties, bioactivities, and hepatic lipid metabolism modulation of tomatoes, as well as the analysis of potential bioactive compounds exerting obesity-alleviating effects. Results showed that after LP fermentation, viable bacterial counts peaked at 9.11 log CFU mL-1 and sugar decreased, while organic acids, umami amino acids, total phenols, and total flavonoids increased. LP fermentation also improved the inhibition capacities of three digestive enzyme activities and Enterobacter cloacae growth, as well as antioxidant activities. Western blot results indicated that fermented tomatoes, especially live probiotic-fermented tomatoes (LFT), showed improved effects compared to unfermented tomatoes in reducing hepatic lipid accumulation by activating the AMPK signal pathway. UHPLC-Q-TOF/MS-based untargeted metabolomics analysis showed that chlorogenic acid, capsiate, tiliroside, irisflorentin, and homoeriodictyol levels increased after fermentation. Subsequent cell culture assays demonstrated that irisflorentin and homoeriodictyol reduced lipid accumulation via enhancing AMPK expression in oleic acid-induced hyperlipidemic HepG2 cells. Furthermore, Spearman's correlation analysis indicated that the five phenols were positively associated with hepatic AMPK pathway activation. Consequently, it could be inferred that the five phenols may be potential bioactive compounds in LFT to alleviate obesity and lipid metabolism disorders. In summary, these findings underscored the transformative potential of LP fermentation in enhancing the bioactive profile of tomatoes and augmenting its capacity to alleviate obesity and lipid metabolism disorders. This study furnished theoretical underpinnings for the functional investigation of probiotic-fermented plant-based foods.


Assuntos
Fermentação , Metabolismo dos Lipídeos , Probióticos , Solanum lycopersicum , Solanum lycopersicum/química , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Probióticos/farmacologia , Células Hep G2 , Fígado/metabolismo , Masculino , Animais , Obesidade/metabolismo , Lactobacillus plantarum/metabolismo , Camundongos
4.
Food Funct ; 15(8): 4462-4474, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563684

RESUMO

Fermented soymilk (FSM4) has attracted much attention due to its nutritional and health characteristics. Exploring FSM4 products to alleviate diarrhea can ensure their effectiveness as a therapeutic food for alleviating gastrointestinal disorders. However, the relationship between gut microbiota and gut metabolite production remains unknown during diarrheal episodes. Therefore, the diarrhea-alleviating role and mechanisms of FSM4 in diarrhea rats were investigated via biochemical, gut microbiota, and serum metabolite analyses. The findings showed that consuming FSM4 improved diarrhea symptoms and reduced systemic inflammation better than non-fermented soymilk (NFSM). It is worth noting that FSM4 promoted the diversity, richness, structure, and composition of gut microbiota. It increased the ability to reduce inflammation associated with harmful bacteria (Anaerofilum, Flavonifractor, Bilophila, Anaerostipes, [Ruminococcus]_torques_group, Clostridium_sensu_stricto_1, Turicibacter, Ruminococcus_1, Ruminiclostridium_6, Prevotellaceae_NK3B31_group and Fusicatenibacter), while stimulating the growth of healthy species (Lactobacillus, Ruminococcaceae_UCG-014, Oscillibacter, [Eubacterium]_coprostanoligenes_group, Negativibacillus, and Erysipelotrichaceae_UCG-003). Moreover, metabolomics analysis showed that lipid metabolites such as lysophosphatidylethanolamine (LysoPE) and sphingolipids were upregulated in the NG group, closely related to pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α, and IFN-γ) and the aforementioned pathogenic bacteria. Notably, in treatment groups, especially FSM4, the accumulation of L-ornithine, aspartic acid, ursocholic acid, 18-oxooleate, and cyclopentanethiol was increased, which was robustly associated with the anti-inflammatory factor IL-10 and beneficial bacteria mentioned above. Therefore, it can be inferred that the amino acids, bile acid, 18-oxooleate, and cyclopentanethiol produced in the FSM4 group can serve as metabolic biomarkers, which synergistically act with the gut microbiota to help alleviate inflammation for diarrhea remission. Overall, FSM4 may provide a new alternative, as an anti-inflammatory diet, to alleviate diarrhea.


Assuntos
Diarreia , Fermentação , Microbioma Gastrointestinal , Metabolômica , Probióticos , Leite de Soja , Diarreia/microbiologia , Diarreia/metabolismo , Animais , Ratos , Probióticos/farmacologia , Masculino , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Ratos Sprague-Dawley
5.
Food Sci Biotechnol ; 33(5): 1207-1219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440689

RESUMO

Microbial treatment can reduce the antinutritional factors and allergenic proteins in corn-soybean meal mixture (CSMM), but the role of the microbial community in hypoallergenicity and digestibility during the fermentation process remains unclear. Therefore, the fermentation strains of Bacillus and LAB were determined, and the compatibility and fermentation process of two-stage solid fermentation composite bacteria were optimized, and the dynamic changes in physicochemical property and microbial community during two-stage fermentation were investigated. Results showed that Bacillus subtilis NCUBSL003 and Lactobacillus acidophilus NCUA065016 were the best fermentation combinations. The optimal fermentation conditions were inoculum 7.14%, solid-liquid ratio of 1:0.88 and fermentation time of 74.30 h. The contents of TI, ß-conglycinin and glycinin decreased significantly after fermentation. Besides, TCA-SP, small peptides and FAA increased. Bacillus and Lactobacillus were the main genera. Pathogenic bacteria genera were inhibited effectively. This study suggests the feasibility of two-stage fermentation in improving the nutrient values and safety of the CSMM. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01426-7.

6.
Int J Biol Macromol ; 262(Pt 1): 129811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302018

RESUMO

Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and ß-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between ß-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 µM) and ALIPSF (IC50 = 558.99 µM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.


Assuntos
Lactobacillus plantarum , Sesamum , Anti-Hipertensivos/farmacologia , Lactobacillus plantarum/metabolismo , Fermentação , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/química , Zinco/metabolismo , Peptidil Dipeptidase A/metabolismo
7.
Mol Nutr Food Res ; 68(5): e2300586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299716

RESUMO

SCOPE: Lactic acid bacteria with probiotic functions and their fermentation products play a role in regulating ulcerative colitis (UC). This study investigates the potential role of fermented soymilk (FSM4) rich in isoflavones on DSS-induced UC. METHODS AND RESULTS: Mice received 3% DSS and are supplemented daily once for 1 week by NFSM and FSM4. DSS usually causes intestinal inflammation and alters the gut microbiota. FSM4 intervention improves the UC-related inflammation and gut microbiota alteration. It considerably decreases pro-inflammatories such as TNF-α, IL-1ß, and IL-6 in serum and COX-2 and MPO in colon tissues and pathogenic bacteria (Escherichia-Shigella). This facilitates gut-healthy bacteria growth. These healthy bacteria negatively correlat with pro-inflammatory factors but positively associated with acetic acid, butyric acid, and propionic acid, which may act for PPAR-γ pathway activating and NF-κB p65 pathway inhibiting, lowering the risk of UC. Overall, FSM4 might alleviate UC and significantly reverse the dysbiosis of gut microbiota via the PPAR-γ activation. It could be a good alternative for developing functional food to protect against UC. CONCLUSION: FSM4 attenuates intestinal inflammation and modulates the SCFA-producing bacteria growth, which enable the PPAR-γ activation to alleviate the UC target, which could be a dietary intervention strategy for gut health.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Probióticos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Dextranos , Receptores Ativados por Proliferador de Peroxissomo , Inflamação , Probióticos/farmacologia , Ácido Butírico , Sulfatos , Sódio , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
8.
Artigo em Inglês | MEDLINE | ID: mdl-38319538

RESUMO

Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.

9.
Food Res Int ; 177: 113865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225131

RESUMO

Laotan Suancai, a Chinese traditional fermented vegetable, possesses a unique flavor that depends on the fermentative microbiota. However, the drivers of microbial succession and the correlation between flavor and active microbiota remain unclear. A total of 21 characteristic flavor metabolites were identified in Laotan Suancai by metabolomics, including 8 sulfides, 6 terpenes, 3 organic acids, 2 isothiocyanates, 1 ester, and 1 pyrazine. Metatranscriptome analysis revealed variations in the active microbiota at different stages of fermentation, and further analysis indicated that organic acids were the primary drivers of microbial succession. Additionally, we reconstructed the metabolic network responsible for the formation of characteristic flavor compounds and identified Companilactobacillus alimentarius, Weissella cibaria, Lactiplantibacillus plantarum, and Loigolactobacillus coryniformis as the core functional microbes involved in flavor development. This study contributed to profoundly understanding the relationship between the active microbiota and flavor quality formation, as well as the targeted selection of starters with flavor regulation abilities.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Fermentação , Bactérias/genética , Bactérias/metabolismo , Microbiota/fisiologia , Metabolômica , Compostos Orgânicos Voláteis/metabolismo
10.
Food Funct ; 15(3): 1170-1190, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38206113

RESUMO

Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lactobacillales , Probióticos , Lactente , Animais , Humanos , Helicobacter pylori/fisiologia , Mucosa Gástrica/metabolismo , Fezes/microbiologia , Probióticos/farmacologia , Boca/patologia , Infecções por Helicobacter/microbiologia
11.
J Sci Food Agric ; 104(4): 2006-2014, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909354

RESUMO

BACKGROUND: Peanut is a significant source of nutrition and a valuable oilseed crop. It is also a serious allergy source, which poses a threat to 1.1% of the population. This study aimed to screen lactic acid bacteria (LAB) with the capacity to alleviate peanut allergenicity and exhibit anti-allergic properties. RESULT: The results show that LAB can make use of substances in peanuts to reduce the pH of peanut milk from 6.603 to 3.593-4.500 by acid production and that it can utilize the protein in peanuts to reduce the allergenic content (especially Ara h 1) and improve biological activity in peanut pulp. The content of Ara h 1 peanut-sensitizing protein was reduced by 74.65% after fermentation. The protein extracted from fermented peanut pulp is more readily digestible by gastrointestinal juices. The inhibitory activity assay of hyaluronidase (an enzyme with strong correlation to allergy) increased from 46.65% to a maximum of 90.57% to reveal that LAB fermentation of peanut pulp exhibited a robust anti-allergic response. CONCLUSION: The strains identified in this study exhibited the ability to mitigate peanut allergenicity partially and to possess potential anti-allergic properties. Lactobacillus plantarum P1 and Lactobacillus salivarius C24 were identified as the most promising strains and were selected for further research. © 2023 Society of Chemical Industry.


Assuntos
Antialérgicos , Lactobacillales , Hipersensibilidade a Amendoim , Hipersensibilidade a Amendoim/prevenção & controle , Antígenos de Plantas/metabolismo , Antialérgicos/farmacologia , Lactobacillus/metabolismo , Proteínas de Plantas/metabolismo , Arachis/química , Alérgenos/química , Lactobacillales/metabolismo
12.
Int J Biol Macromol ; 256(Pt 1): 128030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981289

RESUMO

Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 â†’ or →2)-Fruf-(1 â†’ with branching →1,6)-Fruf-(2 â†’ and terminates in Glcp-(1 â†’ or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.


Assuntos
Frutanos , Polygonatum , Frutanos/química , Inulina/química , Polygonatum/química , Hidrólise , Polissacarídeos/química , Glucose , Ácidos
13.
Food Chem ; 440: 137453, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154284

RESUMO

Fermented plant-based foods that catering to consumers' diverse dietary preferences play an important role in promoting human health. Recent exploration of their nutritional value has sparked increasing interest in the structural and bioactive changes of polysaccharides during fermentation, the essential components of plant-based foods which have been extensively studied for their structures and functional properties. Based on the latest key findings, this review summarized the dominant fermented plant-based foods in the market, the involved microbes and plant polysaccharides, and the corresponding modification in polysaccharides structure. Further microbial utilization of these polysaccharides, influencing factors, and the potential contributions of altered structure to the functions of polysaccharides were collectively illustrated. Moreover, future research trend was proposed, focusing on the directional modification of polysaccharides and exploration of the mechanisms underlying structural changes and enhanced biological activity during fermentation.


Assuntos
Dieta , Alimentos Fermentados , Humanos , Fermentação , Polissacarídeos/farmacologia , Valor Nutritivo
14.
Front Med (Lausanne) ; 10: 1324473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131043

RESUMO

Helicobacter pylori (H. pylori) is a gastric-persistent pathogen that can cause peptic ulcer disease, gastric cancer, and mucosal-associated lymphoid tissue lymphoma. This pathogen is commonly treated with antibiotic-based triple or quadruple therapy. However, antibiotic therapy could result in the bacterial resistance, imbalance of gut microbiota, and damage to the liver and kidneys, etc. Therefore, there is an urgent need for alternative therapeutic strategies. Interestingly, natural food resources, like vegetables, fruits, spices, and edible herbs, have potent inhibitory effects on H. pylori. In this review, we systematically summarized these foods with supporting evidence from both animal and clinical studies. The results have indicated that natural foods may possess temporary inhibition effect on H. pylori rather than durable eradication, and may help to reduce H. pylori colonization, enhance the effect of antibiotics and modulate the host's immune response.

15.
Int J Biol Macromol ; 253(Pt 6): 127307, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37813213

RESUMO

Gut played a potent role in onset and progression of metabolic disorders, presenting an exciting direction for diabetes prevention. Here, the anti-diabetic effects of White hyacinth bean polysaccharides (WHBP) were observed, including the reduction of blood glucose levels and improvement of intestinal impairment in type 2 diabetes mellitus (T2DM) rats. Further data concerning intestinal protection suggested that WHBP restored intestinal barrier, as evidenced by inhibition of intestinal pathological damage, up-regulation of Zonula occluden-1 expression and manipulation of the redox system in T2DM rats. Moreover, WHBP-mediated anti-diabetic effects were in parallel with the adjustment of changes in gut microbiota composition of T2DM rats. Meanwhile, hypersecretion of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone levels, which were critical coordinators of the hypothalamic-pituitary-adrenal (HPA) axis, were suppressed in T2DM rats exposed to WHBP, indicating that WHBP-mediated health benefits were referring to regulate brain feedback in reduction of HPA axis. Concomitantly, further suggested and expanded on gut-brain communication by data of microbial metabolites short-chain fatty acids, mediators of gut-brain interactions, were remarkably raised in cecum contents of T2DM rats subjected to WHBP. Collectively, WHBP performed anti-diabetic effects were associated with control of microbiota-gut-brain axis implicated in intestinal barrier, HPA axis, gut microbiota and their metabolites.


Assuntos
Diabetes Mellitus Tipo 2 , Hyacinthus , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Eixo Encéfalo-Intestino , Sistema Hipófise-Suprarrenal/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
16.
Anim Sci J ; 94(1): e13869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751996

RESUMO

The aim of this study was to isolate and characterize Lactic Acid Bacteria (LAB) from 16 feces samples of pig farm, and to evaluate the probiotic potential of these isolates as potential oral probiotic candidates. The selection process was based on the isolation, identification, and a series of experiments for the selection of appropriate candidates with beneficial properties. The results demonstrated that most of LAB showed relatively strong resistance to pH 2.5 and high bile salts (1%), and had good survival in simulated gastric and intestinal juice. 9 isolates displayed antimicrobial activities against Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Enterobacter sakazakii. Almost all isolates were sensitive to ampicillin, chloramphenicol, vancomycin and amoxicillin, and most of isolates exhibited resistance against tetracycline and vancomycin. The adhesion rates of LAB varied greatly. The results of the study suggested that the Lactobacillus acidophilus NCUA065001 have the important functional property of probiotic candidates to enhance gut integrity and could considered to be the potential antibiotic alternatives in the pig feed industry.


Assuntos
Lactobacillales , Probióticos , Animais , Suínos , Lactobacillus acidophilus , Vancomicina , Fezes/microbiologia , Antibacterianos/farmacologia , Probióticos/farmacologia
17.
J Agric Food Chem ; 71(27): 10361-10374, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390401

RESUMO

The major characteristics of obesity are abnormal lipid metabolism, chronic inflammation, and imbalanced gut microbiota. It has been reported that lactic acid bacteria (LAB) possess potential for alleviating obesity, considering which the strain-specific functions and diverse mechanisms and the roles and mechanisms of various LAB are worthy of investigation. This study aimed to validate and investigate the alleviating effects and underlying mechanisms of three LAB strains, Lactiplantibacillus plantarum NCUH001046 (LP), Limosilactobacillus reuteri NCUH064003, and Limosilactobacillus fermentum NCUH003068 (LF), in high-fat-diet-induced obese mice. The findings demonstrated that the three strains, particularly LP, suppressed body weight gain and fat deposition; ameliorated lipid disorders, liver and adipocyte morphology, and chronic low-grade inflammation; and reduced lipid synthesis via activating the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway. In addition, LP and LF decreased the enrichment of bacteria positively correlated with obesity, like Mucispirillum, Olsenella, and Streptococcus, but facilitated the growth of beneficial bacteria negatively correlated with obesity, like Roseburia, Coprococcus, and Bacteroides, along with increasing the short-chain fatty acid levels. It is deduced that the underlying alleviating mechanism of LP was to modulate the hepatic AMPK signaling pathway and gut microbiota by the microbiome-fat-liver axis to alleviate obesity development. In conclusion, as a diet supplement, LP has promising potential in obesity prevention and treatment.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Lactobacillales , Camundongos , Animais , Camundongos Obesos , Proteínas Quinases Ativadas por AMP , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação , Bactérias/genética , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
18.
Microb Pathog ; 181: 106216, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37391100

RESUMO

The subject of this study was to screen lactic acid bacteria (LAB) with pathogen translocation inhibition and investigate the potential inhibition mechanism of it. Pathogens colonized in the intestine could cross the intestinal barrier to access blood circulation, causing severe complications. This study aimed to screen LAB with favorable inhibitory effects on the translocation of enterinvasive Escherichia coli CMCC44305 (E. coli) and Cronobacter sakazakii CMCC45401 (C. sakazakii), which were two common intestinal opportunistic pathogens. After an elaborate screening procedure including adhesion, antibacterial, and translocation assay, Limosilactobacillus fermentum NCU003089 (L. fermentum NCU3089) and Lactiplantibacillus plantarum NCU0011261 (L. plantarum NCU1261) were found to inhibit 58.38% and 66.85% of pathogen translocation, respectively. Subsequently, LAB pre-treatment suppressed the decline in TEER of Caco-2 monolayers caused by pathogens. Meanwhile, L. fermentum NCU3089 significantly inhibited claudin-1, ZO-1, and JAM-1 degradation caused by E. coli, and L. plantarum NCU1261 markedly reduced claudin-1 degradation caused by C. sakazakii. Also, the two LAB strains significantly decreased TNF-α level. In addition, L. fermentum NCU3089 but not L. plantarum NCU1261 tolerated well in the gastrointestinal fluids, and they were both sensitive or intermediate to nine common clinical antibiotics without hemolytic activity. In short, the two LAB strains could inhibit pathogen translocation by competing for adhesion sites, secreting antibacterial substances, reducing inflammatory cytokines levels, and maintaining intestinal barrier integrity. This study provided a feasible solution to prevent pathogen infection and translocation, and the two LAB strains were safe and had potential in food and pharmaceutical applications.


Assuntos
Cronobacter sakazakii , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos , Humanos , Escherichia coli , Células CACO-2 , Claudina-1/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia , Antibacterianos/metabolismo
19.
J Sci Food Agric ; 103(11): 5588-5599, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37066671

RESUMO

BACKGROUND: Solid-state fermentation (SSF) is a general approach for preparing food and feed, which not only improves nutrition but also provides prebiotics and metabolites. Although many studies have been conducted on the effects of fermentation on feed substrate, the dynamics of microbiota and metabolites in SSF remain unclear. Here, high-throughput sequencing combined with gas chromatography-quadrupole time-of-flight mass spectrometry was used to evaluate the dynamic changes of solid fermented soybean meal and corn mixed matrix inoculated with Bacillus pumilus and Limosilactobacillus fermentum. RESULTS: Generally, inoculated bacteria rapidly proliferated, accompanied by the degradation of macromolecular proteins and an increase in the content of small peptides, trichloroacetic acid-soluble protein, free amino acids and organic acids. Bacillus, Lactobacillus and Enterococcus dominated the whole fermentation process. 389 non-volatile metabolites and 182 volatile metabolites were identified, including amino acids, organic acids, ketones, aldehydes, furans and pyrazine. Typical non-volatile metabolites such as lactic acid, 4-aminobutanoic acid, l-glutamic acid, d-arabinose and volatile metabolites such as 4-ethyl-2-methoxyphenol, 4-penten-2-ol, 2-pentanone, 2-ethylfuran, 2-methylhexanoic acid and butanoic acid-ethyl ester were significantly increased in two-stage solid fermentation. However, some adverse metabolites were also produced, such as oxalic acid, acetic acid, tyramine and n-butylamine, which may affect the quality of fermented feed. Sixteen genera were significantly correlated with differential non-volatile metabolites, while 11 genera were significantly correlated with differential volatile metabolites. CONCLUSION: These results characterized the dynamic changes in the process of two-stage solid-state fermentation with Bacillus pumilus and Limosilactobacillus fermentum and provided a potential reference for additional intervention on improving the effectiveness and efficiency of solid-state fermentation of feed in the future. © 2023 Society of Chemical Industry.


Assuntos
Bacillus pumilus , Limosilactobacillus fermentum , Fermentação , Bacillus pumilus/metabolismo , Zea mays/metabolismo , Farinha , Bactérias/metabolismo , Aminoácidos/metabolismo
20.
Food Chem Toxicol ; 174: 113662, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775138

RESUMO

Lactobacillus (L.) casei NCU011054 isolated from infant feces has been proven to be a potential probiotic in vitro. The present study aimed to investigate the effects of L. casei NCU011054 on the immune response and gut microbiota in cyclophosphamide (CP)-induced immunosuppression mice. Results indicated that L. casei NCU011054 could increase the levels of mucin (Muc2) and tight junction proteins (ZO-1, occludin and claudin-1). Moreover, L. casei NCU011054 was found to upregulate TLRs/NF-κB pathway (TLR-2, TLR-4, TLR-6, p65 and NF-κB) and two transcription factors (T-bet and GATA-3) mRNA levels, and enhance the number of CD4+T cells. Th1-related cytokines (IL-12p70, IFN-γ and TNF-α) and Th2-related cytokines (IL-2, IL-4, IL-6 and IL-10) significantly increased after L. casei NCU011054 treatment. More importantly, L. casei NCU011054 increased the ratio of T-bet to GATA-3 and IFN-γ to IL-4. Apart from these, L. casei NCU011054 remodeled gut microbiota and modulated gut metabolites in CP-induced immunosuppressed mice. The correlation analysis showed that Lactobacillus upregulated by L. casei NCU011054 was positively correlated with TLRs/NF-κB pathway, and the ratio of T-bet to GATA-3 and IFN-γ to IL-4. All findings revealed that L. casei NCU011054 could improve intestinal immune dysfunction and modulate Th1/Th2 balance via TLRs/NF-κB pathway in CP-induced immunosuppressed mice.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Lacticaseibacillus casei , Animais , Camundongos , NF-kappa B/metabolismo , Interleucina-4/metabolismo , Imunidade , Citocinas/metabolismo , Terapia de Imunossupressão , Ciclofosfamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA