Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3884, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719909

RESUMO

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Assuntos
Antígeno B7-1 , Antígeno B7-H1 , Vesículas Extracelulares , Receptor de Morte Celular Programada 1 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Camundongos , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Tolerância Imunológica , Camundongos Endogâmicos C57BL , Masculino , Microambiente Tumoral/imunologia
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685910

RESUMO

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Receptores ErbB/genética , Proteínas rab27 de Ligação ao GTP
3.
Arch Oral Biol ; 151: 105696, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086494

RESUMO

OBJECTIVE: The poor survival rate of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent human cancer, is attributed to frequent locoregional recurrence and lymph node metastases. Though it is reported that the expression of ALG-2 interacting protein X (ALIX) closely correlates with the progression of various tumors, its role in HNSCC remains unclear. The present study aims to investigate the role of ALIX in the development of HNSCC. DESIGN: With immunohistochemical staining, the expression levels of ALIX and series of related functional proteins were compared in normal mucosal (n = 18), HNSCC tissues (n = 54), and metastatic lymph nodes (n = 11). Further, the correlation analysis was performed among the proteins detected. By knocking down ALIX in HNSCC cell lines, the correlation of ALIX with the proteins was verified in vitro. The role of ALIX in proliferation, migration, and invasion of HNSCC cells was further studied by flow cytometry, wounding healing, and transwell assays, respectively. RESULTS: Higher expression level of ALIX was revealed in HNSCC samples, especially in metastatic lymph nodes, than in normal mucosal tissues. Accordingly, increasing levels of MMP9, MMP14, and VEGF-C were also discovered in metastatic lymph nodes and significantly correlated with the expression of ALIX. In vitro assays demonstrated that the knockdown of ALIX reduced both the transcriptional and protein levels of MMP9, MMP14, and VEGF-C, together with suppressed migration and weakened invasion of HNSCC cell lines. CONCLUSIONS: ALIX up-regulated the expression of MMP9, MMP14 and VEGF-C, and promoted migration and invasion of HNSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Metaloproteinase 14 da Matriz , Metaloproteinase 9 da Matriz/metabolismo , Recidiva Local de Neoplasia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator C de Crescimento do Endotélio Vascular
4.
Adv Sci (Weinh) ; 10(7): e2205566, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599707

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell-derived small EVs (T-sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin-mediated endocytosis by ECs, T-sEVs are transported to the perinuclear region in a typical three-stage pattern. Importantly, T-sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T-sEV transportation and cargo-release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD-based SPT technique will help uncover more secrets of sEV-mediated cell-cell communication.


Assuntos
Vesículas Extracelulares , MicroRNAs , MicroRNAs/análise , Células Endoteliais , Vesículas Extracelulares/química , Comunicação Celular , Endocitose
5.
Anal Chem ; 95(2): 1016-1026, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36534080

RESUMO

Small extracellular vesicles (sEVs) are heterogeneous membrane-bound vesicles that carry numerous bioactive molecules. Studies have reported that sEVs carrying PD-L1 on the surface could contribute to immunosuppression; however, the precise mechanisms are unclear. To fully dissect their mode of action, it requires qualified methods to specifically isolate natural PD-L1-positive sEVs from heterogeneous sEVs. This study reported an aptamer-assisted capture-and-release strategy for traceless isolation of PD-L1-positive sEVs. The PD-L1 aptamer-anchored magnetic microspheres enable the specific capture of PD-L1-positive sEVs. The traceless release of captured PD-L1-positive sEVs was triggered by competition of complementary oligonucleotides, endowing the obtained label-free PD-L1-positive sEVs with natural properties. Benefited from this traceless isolation strategy, the distinct molecule profiles in adhesion and immuno-regulation between PD-L1-positive and PD-L1-negative sEVs were revealed. Compared to PD-L1-negative sEVs, PD-L1-positive sEVs were much more concentrated in cadherin binding, accompanied by increased adhesion to lymphatic endothelial cells and T cells but decreased adhesion to the extracellular matrix. Moreover, PD-L1-positive sEVs could transfer their enriched immunosuppressive "synapse"-related proteins to antigen-presenting cells, thereby inducing a tolerogenic-like phenotype. In summary, the present work dissects the subpopulation signature and action mode of PD-L1-positive sEVs for the first time and provides a general approach to the traceless isolation of sEV subpopulations.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Fenótipo , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/farmacologia
6.
Cell Tissue Res ; 390(2): 229-243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35916917

RESUMO

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.


Assuntos
Células Endoteliais , Malformações Vasculares , Humanos , Células Endoteliais/metabolismo , Malformações Vasculares/metabolismo , Células-Tronco/metabolismo , Pericitos/metabolismo
7.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741075

RESUMO

Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive exosomes into the circulation to counter antitumor immunity systemically via T cells. Tumor cell-derived exosomes (TDEs) also play an immunosuppressive role in other immunocytes, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs). Moreover, exosomes secreted by nontumor cells in the tumor microenvironments (TMEs) also exert immunosuppressive effects. This review systematically provides a summary of the immunosuppression induced by exosomes in tumor microenvironments, which modulates tumor growth, invasion, metastasis, and immunotherapeutic resistance. Additionally, therapeutic strategies targeting the molecular mechanism of exosome-mediated tumor development, which may help overcome several obstacles, such as immune tolerance in oncotherapy, are also discussed. Detailed knowledge of the specific functions of exosomes in antitumor immunity may contribute to the development of innovative treatments.


Assuntos
Exossomos , Neoplasias , Exossomos/metabolismo , Humanos , Tolerância Imunológica , Terapia de Imunossupressão , Neoplasias/metabolismo , Microambiente Tumoral
8.
Chem Commun (Camb) ; 57(29): 3555-3558, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33704314

RESUMO

A donor-cell-assisted membrane biotinylation strategy was used to modify small extracellular vesicles (sEVs) while minimizing protein damage, and allowed the sEVs to be loaded onto carriers. Biotinylated programmed death-ligand 1 (PD-L1) positive sEVs were used to select for aptamers from a DNA library. PD-L1 negative sEVs from a homologous cell line were found to remove non-specific aptamer sequences to increase the specificity. After just four rounds, high-affinity aptamers for PD-L1 positive sEVs were selected as novel affinity reagents.


Assuntos
Aptâmeros de Nucleotídeos/análise , Antígeno B7-H1/química , Vesículas Extracelulares/química , Aptâmeros de Nucleotídeos/metabolismo , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Células HeLa , Humanos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA