Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 67, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582941

RESUMO

BACKGROUND: Genomic surveillance is crucial for monitoring malaria transmission and understanding parasite adaptation to interventions. Zambia lacks prior nationwide efforts in malaria genomic surveillance among African countries. METHODS: We conducted genomic surveillance of Plasmodium falciparum parasites from the 2018 Malaria Indicator Survey in Zambia, a nationally representative household survey of children under five years of age. We whole-genome sequenced and analyzed 241 P. falciparum genomes from regions with varying levels of malaria transmission across Zambia and estimated genetic metrics that are informative about transmission intensity, genetic relatedness between parasites, and selection. RESULTS: We provide genomic evidence of widespread within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in Zambia. Our analysis reveals country-level clustering of parasites from Zambia and neighboring regions, with distinct separation in West Africa. Within Zambia, identity by descent (IBD) relatedness analysis uncovers local spatial clustering and rare cases of long-distance sharing of closely related parasite pairs. Genomic regions with large shared IBD segments and strong positive selection signatures implicate genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Furthermore, differences in selection signatures, including drug resistance loci, are observed between eastern and western Zambian parasite populations, suggesting variable transmission intensity and ongoing drug pressure. CONCLUSIONS: Our findings enhance our understanding of nationwide P. falciparum transmission in Zambia, establishing a baseline for analyzing parasite genetic metrics as they vary over time and space. These insights highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.


Malaria is caused by a parasite that is spread to humans via mosquito bites. It is a leading cause of death in children under five years old in sub-Saharan Africa. Analysis of the malaria parasite's complete set of DNA (its genome) can help us to understand transmission of the disease and how this changes in response to different strategies to control the disease. We analyzed the genomes of malaria parasites from children across Zambia. Our study revealed that 77% of children harbored multiple parasite strains, which suggests that local transmission (transmission between people within the same local area) is high. Genetic evidence for long-distance transmission was rarer. Furthermore, our findings suggest parasites are evolving in response to antimalarial drugs. Our study enhances our understanding of malaria dynamics in Zambia and may help to inform strategies for improved surveillance and control.

2.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370674

RESUMO

Genomic surveillance plays a critical role in monitoring malaria transmission and understanding how the parasite adapts in response to interventions. We conducted genomic surveillance of malaria by sequencing 241 Plasmodium falciparum genomes from regions with varying levels of malaria transmission across Zambia. We found genomic evidence of high levels of within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in the country. We identified country-level clustering of parasites from Zambia and neighboring countries, and distinct clustering of parasites from West Africa. Within Zambia, our identity by descent (IBD) relatedness analysis uncovered spatial clustering of closely related parasite pairs at the local level and rare cases of long-distance sharing. Genomic regions with large shared IBD segments and strong positive selection signatures identified genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Together, our findings enhance our understanding of P. falciparum transmission nationwide in Zambia and highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.

3.
BMC Genomics ; 25(1): 223, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424499

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS: In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION: Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.


Assuntos
Panicum , Panicum/metabolismo , Temperatura Alta , Lisina/metabolismo , Histonas/metabolismo , Secas , Estresse Fisiológico/genética , Metilação , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
4.
Food Chem X ; 18: 100660, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37025416

RESUMO

The objective of this study was to characterize the major proteomes and metabolites in beef exudate and determine their relationship to color and oxidative quality of beef muscles. Beef loin (LD) and tenderloin (PM) muscles were cut into sections, individually vacuum-packaged, and aged for 9, 16 and 23 days at 2 °C. Following aging, beef exudates were collected and analyzed for both proteomics and metabolomics profiles. Proteome analysis indicated clustering by muscle types, while metabolomics profiling further clustered the samples based on the aging periods. The PM exudate had a greater concentration of oxidative enzymes, while the LD exudate contained more glycolytic enzymes. Greater lipid, nucleotide, carnitine and glucoside metabolites were observed in LD and 23d exudates. HSP70 and laminin proteins, together with glucosides metabolites, were correlated to muscle oxidative stability. The results indicated that meat exudate could be a viable analytical matrix to determine changes in quality attributes of meat with aging.

5.
FASEB J ; 37(3): e22785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794668

RESUMO

The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.


Assuntos
Tecido Adiposo , Epigenoma , Animais , Camundongos , Tecido Adiposo/metabolismo , Transcriptoma , Camundongos Obesos , Obesidade/metabolismo , Células-Tronco/metabolismo
6.
Front Immunol ; 13: 990900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131928

RESUMO

Recent studies have shown that corn-derived cationic α-D-glucan nanoparticles, known as Nano-11, significantly increase the immune response when used as a vaccine adjuvant in mice and in pigs. Furthermore, the nanoparticles can be formulated with other immunostimulators such as poly(I:C), which further enhances the immune response. The current experiments were aimed at elucidating the mechanism of action of Nano-11 alone and in combination with poly(I:C). The effect of these adjuvants on porcine monocyte-derived dendritic cells (Mo-DCs) was determined by RNA-sequencing, supplemented with flow cytometry, cytokine analysis, and Western blots. Adsorption of poly(I:C) to Nano-11 reduced its cytotoxicity for Mo-DCs. Exposure of Mo-DCs to Nano-11 and Nano-11/poly(I:C) induced differential expression of 979 and 2016 genes, respectively. Gene Ontology enrichment and KEGG pathway analysis revealed many changes in gene expression related to inflammation, innate immunity, immune response to infections, and metabolism. Nano-11 and Nano-11/poly(I:C) induced maturation of the Mo-DCs as indicated by increased expression of costimulatory molecules and MHC II. Increased expression of genes downstream of p38 MAPK activation revealed a role for this signaling pathway in the activation of Mo-DCs by the adjuvants. This was confirmed by Western blot and inhibition of TNF-secretion upon incubation with the p38 inhibitor SB203580. These experiments provide insights into the mechanism of action of the novel adjuvants Nano-11 and Nano-11/poly(I:C).


Assuntos
Glucanos , Nanopartículas , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Animais , Citocinas/metabolismo , Células Dendríticas , Glucanos/farmacologia , Camundongos , Poli I-C/metabolismo , Poli I-C/farmacologia , RNA/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Stress Biol ; 2(1): 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935594

RESUMO

Low molecular weight protein tyrosine phosphatase (LWM-PTP), also known as acid phosphatase, is a highly conserved tyrosine phosphatase in living organisms. However, the function of LWM-PTP homolog has not been reported yet in plants. Here, we revealed a homolog of acid phosphatase, APH, in Arabidopsis plants, is a functional protein tyrosine phosphatase. The aph mutants are hyposensitive to ABA in post-germination growth. We performed an anti-phosphotyrosine antibody-based quantitative phosphoproteomics in wild-type and aph mutant and identified hundreds of putative targets of APH, including multiple splicing factors and other transcriptional regulators. Consistently, RNA-seq analysis revealed that the expression of ABA-highly-responsive genes is suppressed in aph mutants. Thus, APH regulates the ABA-responsive gene expressions by regulating the tyrosine phosphorylation of multiple splicing factors and other post-transcriptional regulators. We also revealed that Tyr383 in RAF9, a member of B2 and B3 RAF kinases that phosphorylate and activate SnRK2s in the ABA signaling pathway, is a direct target site of APH. Phosphorylation of Tyr383 is essential for RAF9 activity. Our results uncovered a crucial function of APH in ABA-induced tyrosine phosphorylation in Arabidopsis. Supplementary Information: The online version contains supplementary material available at 10.1007/s44154-022-00041-6.

8.
PLoS One ; 17(4): e0263634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421121

RESUMO

With the development of computer technology, the concept of computer automatic control has gradually penetrated the research field of aircraft power control, and intelligent power control systems have become mainstream research. The present work aims to improve the performance of the broadband phase-locked loop (PLL) based on the linear Kalman filter. Specifically, this paper first introduces linear Kalman filter and second-order generalized integrator (SOGI). Then, SOGI is added to PLL based on the linear Kalman filter. The purpose is to use the infinite gain effect of SOGI at the central angular frequency to eliminate the time-varying angular frequency component in the error when the system inputs SOGI to achieve a better filtering effect. Then, the system's stability analysis and parameter settings are carried out to establish an intelligent phase-locked method of aviation variable frequency power supply. Finally, simulation experiments are performed. The experimental results demonstrate that PLL via the linear Kalman filter with SOGI can solve the problem that the output phase angle contains high-frequency components when the power supply voltage distortion rate is 10%. This scheme has a strong anti-interference ability under power grid voltage imbalance. The accuracy of the Long and Short-term Memory network used here is about 80%, which can well realize the intelligent aviation power frequency conversion control method. The research reported here provides a reference for establishing smart phase-locked technology of aviation variable frequency power supply.


Assuntos
Algoritmos , Fontes de Energia Elétrica , Aeronaves , Simulação por Computador , Tecnologia
9.
BMC Plant Biol ; 22(1): 107, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260072

RESUMO

BACKGROUND: Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS: We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION: Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Resposta ao Choque Térmico/genética , Panicum/genética , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
10.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768928

RESUMO

The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.


Assuntos
Brachypodium/imunologia , Resistência à Doença/genética , Nematóceros/genética , Triticum/imunologia , Animais , Perfilação da Expressão Gênica , Genoma/genética , Larva/genética , Nematóceros/embriologia , RNA-Seq , Transcriptoma/genética , Virulência/genética
11.
Natl Sci Rev ; 8(1): nwaa149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691553

RESUMO

Salt stress is a major environmental factor limiting plant growth and productivity. We recently discovered an important new salt tolerance pathway, where the cell wall leucine-rich repeat extensins LRX3/4/5, the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23 and receptor-like kinase FERONIA (FER) function as a module to simultaneously regulate plant growth and salt stress tolerance. However, the intracellular signaling pathways that are regulated by the extracellular LRX3/4/5-RALF22/23-FER module to coordinate growth, cell wall integrity and salt stress responses are still unknown. Here, we report that the LRX3/4/5-RALF22/23-FER module negatively regulates the levels of jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). Blocking JA pathway rescues the dwarf phenotype of the lrx345 and fer-4 mutants, while disruption of ABA biosynthesis suppresses the salt-hypersensitivity of these mutants. Many salt stress-responsive genes display abnormal expression patterns in the lrx345 and fer-4 mutants, as well as in the wild type plants treated with epigallocatechin gallate (EGCG), an inhibitor of pectin methylesterases, suggesting cell wall integrity as a critical factor that determines the expression pattern of stress-responsive genes. Production of reactive oxygen species (ROS) is constitutively increased in the lrx345 and fer-4 mutants, and inhibition of ROS accumulation suppresses the salt-hypersensitivity of these mutants. Together, our work provides strong evidence that the LRX3/4/5-RALF22/23-FER module controls plant growth and salt stress responses by regulating hormonal homeostasis and ROS accumulation.

12.
Food Chem Toxicol ; 154: 112288, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089799

RESUMO

The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 µM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Nat Commun ; 12(1): 2456, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911084

RESUMO

The phytohormone abscisic acid (ABA) is crucial for plant responses to environmental challenges. The SNF1-regulated protein kinase 2s (SnRK2s) are key components in ABA-receptor coupled core signaling, and are rapidly phosphorylated and activated by ABA. Recent studies have suggested that Raf-like protein kinases (RAFs) participate in ABA-triggered SnRK2 activation. In vitro kinase assays also suggest the existence of autophosphorylation of SnRK2s. Thus, how SnRK2 kinases are quickly activated during ABA signaling still needs to be clarified. Here, we show that both B2 and B3 RAFs directly phosphorylate SnRK2.6 in the kinase activation loop. This transphosphorylation by RAFs is essential for SnRK2 activation. The activated SnRK2s then intermolecularly trans-phosphorylate other SnRK2s that are not yet activated to amplify the response. High-order Arabidopsis mutants lacking multiple B2 and B3 RAFs show ABA hyposensitivity. Our findings reveal a unique initiation and amplification mechanism of SnRK2 activation in ABA signaling in higher plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética
14.
Stress Biol ; 1(1): 12, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676538

RESUMO

Much has been learned about how plants acclimate to stressful environments, but the molecular basis of stress adaptation and the potential involvement of epigenetic regulation remain poorly understood. Here, we examined if salt stress induces mutagenesis in suspension cultured plant cells and if DNA methylation affects the mutagenesis using whole genome resequencing analysis. We generated suspension cell cultures from two Arabidopsis DNA methylation-deficient mutants and wild-type plants, and subjected the cultured cells to stepwise increases in salt stress intensity over 40 culture cycles. We show that ddc (drm1 drm2 cmt3) mutant cells can adapt to grow in 175 mM NaCl-containing growth medium and exhibit higher adaptability compared to wild type Col-0 and nrpe1 cells, which can adapt to grow in only 125 mM NaCl-containing growth medium. Salt treated nrpe1 and ddc cells but not wild type cells accumulate more mutations compared with their respective untreated cells. There is no enrichment of stress responsive genes in the list of mutated genes in salt treated cells compared to the list of mutated genes in untreated cells. Our results suggest that DNA methylation prevents the induction of mutagenesis by salt stress in plant cells during stress adaptation.

16.
BMC Genomics ; 21(1): 888, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308144

RESUMO

BACKGROUND: Voice disorders are a worldwide problem impacting human health, particularly for occupational voice users. Avoidance of surface dehydration is commonly prescribed as a protective factor against the development of dysphonia. The available literature inconclusively supports this practice and a biological mechanism for how surface dehydration of the laryngeal tissue affects voice has not been described. In this study, we used an in vivo male New Zealand white rabbit model to elucidate biological changes based on gene expression within the vocal folds from surface dehydration. Surface dehydration was induced by exposure to low humidity air (18.6% + 4.3%) for 8 h. Exposure to moderate humidity (43.0% + 4.3%) served as the control condition. Ilumina-based RNA sequencing was performed and used for transcriptome analysis with validation by RT-qPCR. RESULTS: There were 103 statistically significant differentially expressed genes identified through Cuffdiff with 61 genes meeting significance by both false discovery rate and fold change. Functional annotation enrichment and predicted protein interaction mapping showed enrichment of various loci, including cellular stress and inflammatory response, ciliary function, and keratinocyte development. Eight genes were selected for RT-qPCR validation. Matrix metalloproteinase 12 (MMP12) and macrophage cationic peptide 1 (MCP1) were significantly upregulated and an epithelial chloride channel protein (ECCP) was significantly downregulated after surface dehydration by RNA-Seq and RT-qPCR. Suprabasin (SPBN) and zinc activated cationic channel (ZACN) were marginally, but non-significantly down- and upregulated as evidenced by RT-qPCR, respectively. CONCLUSIONS: The data together support the notion that surface dehydration induces physiological changes in the vocal folds and justifies targeted analysis to further explore the underlying biology of compensatory fluid/ion flux and inflammatory mediators in response to airway surface dehydration.


Assuntos
Laringe , Animais , Perfilação da Expressão Gênica , Umidade , Masculino , Coelhos , Análise de Sequência de RNA , Prega Vocal
17.
J Biomol Tech ; 31(2): 47-56, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31966025

RESUMO

Small RNAs (smRNAs) are important regulators of many biologic processes and are now most frequently characterized using Illumina sequencing. However, although standard RNA sequencing library preparation has become routine in most sequencing facilities, smRNA sequencing library preparation has historically been challenging because of high input requirements, laborious protocols involving gel purifications, inability to automate, and a lack of benchmarking standards. Additionally, studies have suggested that many of these methods are nonlinear and do not accurately reflect the amounts of smRNAs in vivo. Recently, a number of new kits have become available that permit lower input amounts and less laborious, gel-free protocol options. Several of these new kits claim to reduce RNA ligase-dependent sequence bias through novel adapter modifications and to lessen adapter-dimer contamination in the resulting libraries. With the increasing number of smRNA kits available, understanding the relative strengths of each method is crucial for appropriate experimental design. In this study, we systematically compared 9 commercially available smRNA library preparation kits as well as NanoString probe hybridization across multiple study sites. Although several of the new methodologies do reduce the amount of artificially over- and underrepresented microRNAs (miRNAs), we observed that none of the methods was able to remove all of the bias in the library preparation. Identical samples prepared with different methods show highly varied levels of different miRNAs. Even so, many methods excelled in ease of use, lower input requirement, fraction of usable reads, and reproducibility across sites. These differences may help users select the most appropriate methods for their specific question of interest.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/normas , MicroRNAs/genética , Análise de Sequência de RNA/normas , MicroRNAs/isolamento & purificação , Reprodutibilidade dos Testes , Software
18.
Cell Rep ; 23(11): 3340-3351.e5, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898403

RESUMO

Abscisic acid (ABA) is an important phytohormone controlling responses to abiotic stresses and is sensed by proteins from the PYR/PYL/RCAR family. To explore the genetic contribution of PYLs toward ABA-dependent and ABA-independent processes, we generated and characterized high-order Arabidopsis mutants with mutations in the PYL family. We obtained a pyl quattuordecuple mutant and found that it was severely impaired in growth and failed to produce seeds. Thus, we carried out a detailed characterization of a pyl duodecuple mutant, pyr1pyl1/2/3/4/5/7/8/9/10/11/12. The duodecuple mutant was extremely insensitive to ABA effects on seed germination, seedling growth, stomatal closure, leaf senescence, and gene expression. The activation of SnRK2 protein kinases by ABA was blocked in the duodecuple mutant, but, unexpectedly, osmotic stress activation of SnRK2s was enhanced. Our results demonstrate an important role of basal ABA signaling in growth, senescence, and abscission and reveal that PYLs antagonize ABA-independent activation of SnRK2s by osmotic stress.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Mutagênese , Pressão Osmótica/efeitos dos fármacos
19.
Mol Cell ; 69(1): 100-112.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290610

RESUMO

As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Estresse Fisiológico
20.
Bioinformatics ; 34(4): 708-709, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087450

RESUMO

Motivation: High throughput bisulfite sequencing (BS-seq) is an important technology to generate single-base DNA methylomes in both plants and animals. In order to accelerate the data analysis of BS-seq data, toolkits for visualization are required. Results: ViewBS, an open-source toolkit, can extract and visualize the DNA methylome data easily and with flexibility. By using Tabix, ViewBS can visualize BS-seq for large datasets quickly. ViewBS can generate publication-quality figures, such as meta-plots, heat maps and violin-boxplots, which can help users to answer biological questions. We illustrate its application using BS-seq data from Arabidopsis thaliana. Availability: ViewBS is freely available at: https://github.com/xie186/ViewBS. Contact: xie186@purdue.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Animais , Plantas/genética , Plantas/metabolismo , Sulfitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA