Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 148: 387-398, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095174

RESUMO

Land use and precipitation are two major factors affecting phosphorus (P) pollution of watershed runoff. However, molecular characterization of dissolved organic phosphorus (DOP) in runoff under the joint influences of land use and precipitation remains limited. This study used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to study the molecular characteristics of DOP in a typical P-polluted watershed with spatially variable land use and precipitation. The results showed that low precipitation and intense human activity, including phosphate mining and associated industries, resulted in the accumulation of aliphatic DOP compounds in the upper reaches, characterized by low aromaticity and low biological stability. Higher precipitation and widespread agriculture in the middle and lower reaches resulted in highly unsaturated DOP compounds with high biological stability constituting a higher proportion, compared to in the upper reaches. While, under similar precipitation, more aliphatic DOP compounds characterized by lower aromaticity and higher saturation were enriched in the lower reaches due to more influence from urban runoff relative to the middle reaches. Photochemical and/or microbial processes did result in changes in the characteristics of DOP compounds during runoff processes due to the prevalence of low molecular weight and low O/C bioavailable aliphatic DOP molecules in the upper reaches, which were increasingly transformed into refractory compounds from the upper to middle reaches. The results of this study can increase the understanding of the joint impacts of land use and precipitation on DOP compounds in watershed runoff.


Assuntos
Monitoramento Ambiental , Fósforo , Poluentes Químicos da Água , Fósforo/análise , Poluentes Químicos da Água/análise , Chuva/química , Agricultura
2.
Sci Total Environ ; 953: 176116, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245383

RESUMO

To understand the genesis and spatial distribution of high iodine groundwater in the Hetao Basin, 540 groundwater samples were analyzed for the chemistry and isotope. Total iodine concentrations in groundwater range from 1.32 to 2897 µg/L, with a mean value of 159.2 µg/L. The groundwater environment was mainly characterized by the weakly alkaline and reducing conditions, with the iodide as the main species of groundwater iodine. High iodine groundwater (I > 100 µg/L) was mainly distributed in shallow aquifers (< 30 m) of Hangjinhouqi near the Langshan Mountain and the discharge areas along the main drainage channels. The δ18O and δ2H values ranged from -12.09 ‰ to -3.99 ‰ and - 91.58 ‰ to -52.80 ‰, respectively, and the correlation between groundwater iodine and isotopes indicates the dominant role of evapotranspiration in the enrichment of iodine in the shallow groundwater with depth <30 m. It was further evidenced by the correlation between groundwater iodine and Cl/Br molar ratio, and significant contributions of climate factors identified from the random forest and XGBoost. Moreover, irrigation practices contribute to high iodine levels, with surface water used for irrigation containing up to 537.8 µg/L of iodine, which can be introduced into shallow aquifer directly. The iodine in irrigation water can be retained in the soil or shallow sediment, and later leach into groundwater under favorable conditions.

3.
Ecotoxicol Environ Saf ; 283: 116825, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094455

RESUMO

To better understand the impact of long-term irrigation practices on arsenic (As) accumulation in agricultural soils, 100 soil samples from depths of 0-20 cm were collected from the Datong basin, where the As-contaminated groundwater has been used for irrigation for several decades. Soil samples were analyzed for major elements, trace elements, and As, Fe speciation. Results reveal As content ranging from 4.00 to 14.5 mg/kg, an average of 10.2 ± 2.05 mg/kg, consistent with surveys conducted in 1998 and 2007. Arsenic speciation ranked in descending order as follows: As associated with silicate minerals (AsSi, 29.70 ± 7.53 %) > amorphous Fe-minerals associated As (AsFeox1, 26.40 ± 3.27 %) > crystalline Fe-minerals associated As (AsFeox2, 24.02 ± 4.60 %) > strongly adsorbed As (AsSorb, 14.29 ± 2.81 %) > As combined with carbonates and Fe-carbonates (AsCar, 2.30 ± 0.44 %) > weakly adsorbed As (AsDiss, 2.59 ± 1.00 %). The anomalous negative correlation between As and Fe content reflects the primary influence of soil provenance. Evidence from major element compositions and rare earth element patterns indicates that total As and Fe contents in soils are controlled by parent materials, exhibiting distinct north-south differences (As: higher levels in the north, lower levels in the south; Fe: higher levels in the south, lower levels in the north). Evidence from the Chemical Index of Alteration (CIA) and As/Ti ratio suggests that chemical weathering has led to As enrichment in the central basin. Notably, relationships such as AsDiss/Ti, AsSorb/Ti with CIA and total Fe content indicate significant influences of irrigation practices on adsorbed As (both weakly and strongly adsorbed) contents, showing a pattern of higher levels in the central basin and lower levels in the Piedmont. However, total As content remained stable after long-term irrigation, potentially due to the re-release of accumulated As via geochemical pathways during non-irrigated periods. These findings demonstrate that the soil systems can naturally remediate exogenous As contamination induced by irrigation practices. Quantitative assessment of the balance between As enrichment and re-release in soil systems is crucial for preventing soil As contamination, highlighting strategies like water-saving techniques and fallow periods to manage As contamination in agricultural areas using As-contaminated groundwater for irrigation.


Assuntos
Irrigação Agrícola , Arsênio , Monitoramento Ambiental , Água Subterrânea , Poluentes do Solo , Solo , Irrigação Agrícola/métodos , Arsênio/análise , Poluentes do Solo/análise , Solo/química , Água Subterrânea/química , Ferro/análise , Ferro/química , Agricultura/métodos , Adsorção , Minerais/análise , Minerais/química
4.
Sci Total Environ ; 951: 175647, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168335

RESUMO

Anthropogenic and hydrological drivers are key factors influencing the fate of dissolved organic matter (DOM) and dissolved organic phosphorus (DOP) in river runoff. However, how anthropogenic disturbances and hydrological conditions jointly affect the composition and characteristics of DOM and DOP in river runoff remains unclear. This study used fluorescence spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry, and the stable water isotopes to interpret the chemical composition and properties of DOM and DOP as well as their linkages to anthropogenic disturbances and hydrological conditions in a typical P-contaminated tributary to the central Yangtze River. The results show in the wet season, the average abundance of humic-like components in DOM exceeded 60 %, while the average abundance of tryptophan-like components in DOM exceeded 50 % in the dry season. During the dry season, hydrological conditions had a greater impact on highly unsaturated DOM compounds compared to anthropogenic disturbances because a decrease in precipitation reduced the transport of terrestrial DOM into aquatic systems and increased water retention time in the river, promoting the production of unsaturated compounds from photochemistry. The effects of the two factors were similar in the wet season because active agricultural activities and intense precipitation jointly facilitated the entry of exogenous humics into the runoff, leading to the similar relative abundance of highly unsaturated DOM compounds associated with both factors. Anthropogenic disturbances had a greater impact on aliphatic DOM and DOP than hydrological conditions, which was associated with intense human activities in the watershed, such as phosphate mining, agricultural cultivation, and domestic sewage discharge. This study provides new knowledge about the composition, properties and underlying mechanisms of DOM and DOP in the P-contaminated watershed runoff.

5.
J Hazard Mater ; 477: 135284, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047555

RESUMO

Illite plays an essential role in arsenic (As) transportation in the subsurface. Despite extensive investigations into As adsorption onto illite, debates persist due to the absence of direct evidence revealing the underlying processes. In this research, we conducted batch experiments and employed spherical aberration-corrected scanning transmission electron microscope, X-ray absorption spectroscopy, and density functional theory-based calculations to elucidate the mechanisms for the adsorption of two major inorganic As species (As(III) and As(V)) onto illite. Experimental results indicate adsorption capacities of 0.251 and 0.667 µmol/g for As(III) and As(V) onto illite, respectively. As(III) adsorption occurs within 300 min, whereas As(V) is rapidly adsorbed within 500 min, after which it tends to stabilize. Both As species can adsorbed onto the basal surface via electrostatic forces, where cations act as a bridge, leading to specific-cation effects. Conversely, As adsorption onto the edge surface can be ascribed to inner-sphere complexes via As-O-Al bonds, causing a negatively shifted isoelectric point of illite. These mechanisms collectively account for the partially reversible adsorption and two-stage kinetics pattern. Finally, a process-based surface complexation model was developed to predict As adsorption onto illite, which includes the inner/outer-sphere complexation and monodentate/bidentate complexes.

6.
J Hazard Mater ; 476: 135047, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959833

RESUMO

Arsenic (As) is a groundwater contaminant of global concern. The degradation of dissolved organic matter (DOM) can provide a reducing environment for As release. However, the interaction of DOM with local microbial communities and how different sources and types of DOM influence the biotransformation of As in aquifers is uncertain. This study used optical spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), metagenomics, and structural equation modeling (SEM) to demonstrate the how the biotransformation of As in aquifers is promoted. The results indicated that the DOM in high-As groundwater is dominated by highly unsaturated low-oxygen(O) compounds that are quite humic and stable. Metagenomics analysis indicated Acinetobacter, Pseudoxanthomonas, and Pseudomonas predominate in high-As environments; these genera all contain As detoxification genes and are members of the same phylum (Proteobacteria). SEM analyses indicated the presence of Proteobacteria is positively related to highly unsaturated low-O compounds in the groundwater and conditions that promote arsenite release. The results illustrate how the biogeochemical transformation of As in groundwater systems is affected by DOM from different sources and with different characteristics.


Assuntos
Arsênio , Água Subterrânea , Metagenômica , Poluentes Químicos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Arsênio/metabolismo , Arsênio/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Espectrometria de Massas , Análise de Fourier , Bactérias/genética , Bactérias/metabolismo
7.
Sci Total Environ ; 943: 173776, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38862046

RESUMO

High­arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur­iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high­sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.

8.
Environ Sci Technol ; 58(20): 8783-8791, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718173

RESUMO

Machine learning models show promise in identifying geogenic contaminated groundwaters. Modeling in regions with no or limited samples is challenging due to the need for large training sets. One potential solution is transferring existing models to such regions. This study explores the transferability of high fluoride groundwater models between basins in the Shanxi Rift System, considering six factors, including modeling methods, predictor types, data size, sample/predictor ratio (SPR), predictor range, and data informing. Results show that transferability is achieved only when model predictors are based on hydrochemical parameters rather than surface parameters. Data informing, i.e., adding samples from challenging regions to the training set, further enhances the transferability. Stepwise regression shows that hydrochemical predictors and data informing significantly improve transferability, while data size, SPR, and predictor range have no significant effects. Additionally, despite their stronger nonlinear capabilities, random forests and artificial neural networks do not necessarily surpass logistic regression in transferability. Lastly, we utilize the t-SNE algorithm to generate low-dimensional representations of data from different basins and compare these representations to elucidate the critical role of predictor types in transferability.


Assuntos
Água Subterrânea , Aprendizado de Máquina , Redes Neurais de Computação , Poluentes Químicos da Água/análise , Modelos Teóricos , Monitoramento Ambiental/métodos
9.
Environ Sci Technol ; 58(13): 5932-5941, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502530

RESUMO

Organoiodine compounds (OICs) are the dominant iodine species in groundwater systems. However, molecular mechanisms underlying the geochemical formation of geogenic OICs-contaminated groundwater remain unclear. Based upon multitarget field monitoring in combination with ultrahigh-resolution molecular characterization of organic components for alluvial-lacustrine aquifers, we identified a total of 939 OICs in groundwater under reducing and circumneutral pH conditions. In comparison to those in water-soluble organic matter (WSOM) in sediments, the OICs in dissolved organic matter (DOM) in groundwater typically contain fewer polycyclic aromatics and polyphenol compounds but more highly unsaturated compounds. Consequently, there were two major sources of geogenic OICs in groundwater: the migration of the OICs from aquifer sediments and abiotic reduction of iodate coupled with DOM iodination under reducing conditions. DOM iodination occurs primarily through the incorporation of reactive iodine that is generated by iodate reduction into highly unsaturated compounds, preferably containing hydrophilic functional groups as binding sites. It leads to elevation of the concentration of the OICs up to 183 µg/L in groundwater. This research provides new insights into the constraints of DOM molecular composition on the mobilization and enrichment of OICs in alluvial-lacustrine aquifers and thus improves our understanding of the genesis of geogenic iodine-contaminated groundwater systems.


Assuntos
Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodatos , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água , Monitoramento Ambiental
10.
J Hazard Mater ; 466: 133640, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309162

RESUMO

The environmental fate of arsenic (As) relies substantially on its speciation, which occurs frequently coupled to the redox transformation of manganese. While trivalent manganese (Mn(III)), which is known for its high reactivity, is believed to play a role in As mobilization by iron (oxyhydr)oxides in dynamic aquifers, the exact roles and underlying mechanisms are still poorly understood. Using increasingly complex batch experiments that mimick As-affected aquifer conditions in combination with time-resolved characterization, we demonstrate that Mn(III)-NOM complexes play a crucial role in the manganese-mediated immobilization of As(III) by ferrihydrite and goethite. Under anaerobic condition, Mn(III)-fulvic acid (FA) rapidly oxidized 31.8% of aqueous As(III) and bound both As(III) and As(V). Furthermore, Mn(III)-FA exerted significantly different effects on the adsorption of As by ferrihydrite and goethite. Mn(III)-FA increased the adsorption of As by 6-16% due to the higher affinity of oxidation-produced As(V) for ferrihydrite under circumneutral conditions. In contrast, As adsorption by crystalline goethite was eventually inhibited due to the competitive effect of Mn(III)-FA. To summarize, our results reveal that Mn(III)-NOM complexes play dual roles in As retention by iron oxides, depending on the their crystallization. This highlights the importance of Mn(III) for the fate of As particularly in redox fluctuating groundwater environments.

11.
Water Res ; 251: 121117, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219691

RESUMO

Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Ferro/análise , Minerais , Sulfatos
12.
J Environ Manage ; 352: 120112, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38244408

RESUMO

The spatial heterogeneity of arsenic (As) concentration exceeding the 10 µg/L WHO limit at the field scale poses significant challenges for groundwater utilization, but it remains poorly understood. To address this knowledge gap, the Daying site was selected as a representative case (As concentration ranged from 1.55 to 2237 µg/L within a 250 × 150 m field), and a total of 28 groundwater samples were collected and analyzed for hydrochemistry, As speciation, and stable hydrogen and oxygen isotope. Principal component analysis was employed to identify the primary factors controlling groundwater hydrochemistry. Results indicate that the spatial heterogeneity of groundwater As concentration is primarily attributed to vertical recharge and competitive adsorption. Low vertical recharge introduces reductive substances, such as dissolved organic matter, which enhances the reductive environment and facilitates microbial-induced reduction and mobilization of As. Conversely, areas with high vertical recharge introduce oxidizing agents like SO42- and DO, which act as preferred electron acceptors over Fe(III), thus inhibiting the reductive dissolution of Fe(III) oxides and the mobilization of As. PCA and hydrochemistry jointly indicate that spatial variability of P and its competitive adsorption with As are important factors leading to spatial heterogeneity of groundwater As concentration. However, the impacts of pH, Si, HCO3-, and F- on As adsorption are insignificant. Specifically, low vertical recharge can increase the proportion of As(III) and promote P release through organic matter mineralization. This process further leads to the desorption of As, indicating a synergistic effect between low vertical recharge and competitive adsorption. This field-scale spatial heterogeneity underscores the critical role of hydrogeological conditions. Sites with close hydraulic connections to surface water often exhibit low As concentrations in groundwater. Therefore, when establishing wells in areas with widespread high-As groundwater, selecting sites with open hydrogeological conditions can prove beneficial.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Compostos Férricos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Subterrânea/química , Oxidantes
13.
J Environ Sci (China) ; 137: 195-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980008

RESUMO

Antimicrobial resistance in the laying hen production industry has become a serious public health problem. The antimicrobial resistance and phylogenetic relationships of the common conditional pathogen Enterococcus along the laying hen production chain have not been systematically clarified. 105 Enterococcus isolates were obtained from 115 environmental samples (air, dust, feces, flies, sewage, and soil) collected along the laying hen production chain (breeding chicken, chick, young chicken, and commercial laying hen). These Enterococcus isolates exhibited resistance to some clinically relevant antibiotics, such as tetracycline (92.4%), streptomycin (92.4%), and erythromycin (91.4%), and all strains had multidrug resistance phenotypes. Whole genome sequencing characterized 29 acquired antibiotic resistance genes (ARGs) that conferred resistance to 11 classes of antibiotics in 51 pleuromutilin-resistant Enterococcus isolates, and lsa(E), which mediates resistance to pleuromutilins, always co-occurred with lnu(B). Alignments with the Mobile Genetic Elements database identified four transposons (Tn554, Tn558, Tn6261, and Tn6674) with several ARGs (erm(A), ant(9)-la, fex(A), and optrA) that mediated resistance to many clinically important antibiotics. Moreover, we identified two new transposons that carried ARGs in the Tn554 family designated as Tn7508 and Tn7492. A complementary approach based on conventional multi-locus sequence typing and whole genome single nucleotide polymorphism analysis showed that phylogenetically related pleuromutilin-resistant Enterococcus isolates were widely distributed in various environments on different production farms. Our results indicate that environmental contamination by antimicrobial-resistant Enterococcus requires greater attention, and they highlight the risk of pleuromutilin-resistant Enterococcus and ARGs disseminating along the laying hen production chain, thereby warranting effective disinfection.


Assuntos
Antibacterianos , Enterococcus , Animais , Feminino , Enterococcus/genética , Antibacterianos/farmacologia , Galinhas/genética , Filogenia , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Pleuromutilinas
14.
Environ Sci Technol ; 58(1): 695-703, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141021

RESUMO

The fate of antimony (Sb) is strongly affected by adsorption, yet Sb isotope fractionation and the associated mechanism have not been widely reported. Here we experimentally investigated the process of Sb(V) adsorption on iron (oxyhydr)oxides and the associated isotope effects. Sb isotope fractionation occurs during adsorption (Δ123Sbsolution-mineral = 1.20 ± 0.02‰ for ferrihydrite and 2.35 ± 0.04‰ for goethite). Extended X-ray absorption fine structure (EXAFS) analysis shows that Sb(V) adsorption on iron (oxyhydr)oxides occurs via inner-sphere surface complexation, including mononuclear bidentate edge-sharing (2E) and binuclear bidentate corner-sharing (2C) complexes. A longer atom distance of Sb-Fe in ferrihydrite leads to less Sb isotope fractionation during Sb adsorption than in goethite. The Gibbs free energy and Mayer bond order were calculated based on density functional theory (DFT) and suggested that the strength of the bonding environment can be summarized as Sb(OH)6- > 2E > 2C. In turn, the bonding environment indicates the mechanism of Sb isotope fractionation during the process. This study reveals that Sb isotope fractionation occurs during Sb(V) adsorption onto iron (oxyhydr)oxides, providing a basis for the future study of Sb isotopes and further understanding of the fractionation mechanism.


Assuntos
Ferro , Óxidos , Ferro/química , Antimônio/química , Adsorção , Compostos Férricos/química , Isótopos
15.
Chemosphere ; 341: 140037, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659512

RESUMO

The source and composition characteristics of dissolved organic matter (DOM) are crucial to identify and evaluate the sources of pollution in the watershed. The construction of reservoirs changes the hydrological condition and pollutant fate of the river. However, the effects of reservoirs' construction on DOM in the watershed and the underlying mechanisms are still unclear. This study aims to examine and compare the characteristics of DOM in reservoirs and streams in the Huangbai River, a typical reservoir-affected and P-contaminated river within the Yangtze River catchment. The results showed that DOM in reservoirs was characterized by more contribution from autochthonous source, under the influence of reservoirs' construction; while, DOM in rivers was mainly originated from terrestrial input. Reservoirs had more lipid-like and protein-like compounds, while rivers contained more oxy-aromatic-like compounds. The percentage of CHOP molecules in reservoirs was significantly higher than that in rivers. The underlying mechanism is that more suitable conditions were created for plankton to grow after constructing reservoirs, which converted inorganic orthophosphate into organic phosphorus, and over time, organic phosphorus was gradually enriched in reservoirs, which exacerbated the risk of eutrophication in the reservoir water body. This study can provide theoretical support for monitoring and evaluation of water quality in reservoir-affected rivers.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Ambientais , Rios , Fósforo , Qualidade da Água
16.
Sci Total Environ ; 904: 166699, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660817

RESUMO

Excess fluoride (F-) in groundwater can be hazardous to human health of local residents who rely upon it. Beside natural sources, anthropogenic input may be an additional source to be considered. Twenty surface water and 396 groundwater samples were collected from the Nansi Lake Basin, with hydrogeochemical and isotope techniques employed to clarify the spatial variability, source, and the natural and anthropogenic factors regulating the occurrence of high F- groundwater. The factors responsible for elevated F- levels in surface water and deep confined aquifers are discussed based on their hydraulic relationship. Also a conceptual model of F- enrichment with different aquifer systems is put forward based on the geomorphic units of the basin. The results show that F- concentration is between 0.1 and 6.9 mg/L in the west of Lake, while ranged from 0.03 to 1.74 mg/L in the east of Lake. The hydrogeological setting and lithology are the primary factor determining the provenance of high-fluoride groundwater in the basin. Fluoride mainly originated from the dissolution of fluorine-bearing minerals, and is affected by the alkaline groundwater environment, cation exchange, adsorption, and evaporation. The landforms on the east side of Nansi Lake are low hills and piedmont sedimentary plains, where the aquifers consist of karst fissure water and overlying porewater. High F- groundwater is not observed in this area due to its rapid flow and Ca2+-enriched hydrochemical characteristics. The anthropogenic input (such as fertilizer application on farms and illegal industrial pollutant discharge), contribute F- to groundwater in varying degrees, especially in the shallow aquifers east of the lake and in some parts west of the lake. This work is a clear example of how natural processes together with human activities can affect the chemical quality of groundwater, which is essential to safeguard the sustainable management of water resources in semi-arid areas.

17.
Sci Total Environ ; 894: 164941, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343891

RESUMO

Iron (hydr)oxides are effective sorbents of arsenic that undergo reductive dissolution when exposed to dissolved sulfide, which significantly impacts the movement and repartition of arsenic in groundwater. This study investigated the sulfidation of As-bearing ferrihydrite and its consequences on arsenic repartitioning as well as formation and transformation of secondary minerals induced by sulfide in batch experiments. The sulfidation of As(III) and As(V) adsorbed on ferrihydrite shows very different results. In the As(V) system, sulfidation resulted in the production of significant amounts of elemental sulfur (S0) and Fe2+, and Fe2+ and sulfide combine to form mackinawite. Subsequently, Fe2+ adsorbed and catalyzed the conversion of residual ferrihydrite to lepidocrocite. However, in the As(III) system, As(III) was protonated in the presence of sulfide to produce thioarsenate, which accounted for 87.9 % of the total aqueous arsenic concentration. The formation of thioarsenate also consumed the S0 produced by the sulfidation, resulting in no detectable S0 during solid phase characterization. The adsorption of thioarsenate on iron minerals notably affected the surface charge density of ferrihydrite, hindering the further formation of secondary minerals. Studies on the influence of thiolation on As-Fe-S system are of great significance for understanding the migration and redistribution of arsenic in groundwater systems under sulfur-rich conditions.

18.
Chemosphere ; 336: 139276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343632

RESUMO

Phosphate is the biggest competitor for arsenic removal. Nanoscale metal oxides (NMOs) are commonly used to treat arsenic-contaminated water, yet their selective adsorption mechanisms for arsenic and phosphate are poorly understood. We quantified the selectivity of iron oxide (Fe2O3), zinc oxide (ZnO), and titanium dioxide (TiO2) nanosheets for arsenic in systems containing arsenic and phosphate, and determined the interaction of phosphate and arsenate/arsenite on metal oxide surfaces through batch experiments, spectroscopic techniques, and DFT calculations. We found that Fe2O3, TiO2, and ZnO nanosheets exhibit selectivity for arsenate/arsenite in the presence of phosphate, with Fe2O3 the most selective, followed by TiO2 and ZnO. The bonding mechanism on these metallic oxide surfaces dominates the selectivity. The more stable inner-sphere complexes of arsenate on the surfaces of Fe2O3 (bidentate binuclear), TiO2 (bidentate binuclear), and ZnO nanosheets (tridentate trinuclear) contribute to their preference for arsenate over phosphate. This difference in arsenate selectivity can be reflected in the difference in adsorption energy, net electron transfer number, and M - O bond length of the most stable inner sphere complexes. Overall, our study elucidated the selective adsorption mechanisms of arsenate/arsenite on Fe2O3, TiO2, and ZnO surfaces and highlighted the need to consider the competition between arsenate and phosphate during their removal from contaminated water.


Assuntos
Arsênio , Fosfatos , Poluentes Químicos da Água , Adsorção , Arseniatos/química , Arsênio/química , Arsenitos/química , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Óxidos/química , Fosfatos/química , Água , Óxido de Zinco
19.
Water Res ; 239: 120072, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207456

RESUMO

Geogenic arsenic (As) contaminated groundwater has been widely accepted associating with dissolved organic matter (DOM) in aquifers, but the underlying enrichment mechanism at molecular-level from a thermodynamic perspective is poorly evidenced. To fill this gap, we contrasted the optical properties and molecular compositions of DOM coupled with hydrochemical and isotopic data in two floodplain aquifer systems with significant As variations along the middle reaches of Yangtze River. Optical properties of DOM indicate that groundwater As concentration is mainly associated with terrestrial humic-like components rather than protein-like components. Molecular signatures show that high As groundwater has lower H/C ratios, but greater DBE, AImod, and NOSC values. With the increase of groundwater As concentration, the relative abundance of CHON3 formulas gradually decreased while that of CHON2 and CHON1 increased, indicating the importance of N-containing organics in As mobility, which is also evidenced by nitrogen isotope and groundwater chemistry. Thermodynamic calculation demonstrated that organic matter with higher NOSC values preferentially favored the reductive dissolution of As-bearing Fe(III) (hydro)oxides minerals and thus promoted As mobility. These findings could provide new insights to decipher organic matter bioavailability in As mobilization from a thermodynamical perspective and are applicable to similar geogenic As-affected floodplain aquifer systems.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Compostos Férricos/análise , Arsênio/análise , Rios/química , Poluentes Químicos da Água/análise , Água Subterrânea/química , Matéria Orgânica Dissolvida , Monitoramento Ambiental
20.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37156520

RESUMO

Antimicrobial resistance is a rapidly evolving and extremely complex issue, particularly due to the use of various types of antimicrobials within human, animal, and environmental sectors. Pleuromutilin antibiotics are used to prevent and control respiratory diseases in the rearing stage of hen chicks, but the current status of pleuromutilin resistance in the laying hen breeding process is unclear. ATP-binding cassette transporters encoded by lsa(A), lsa(E), lsa(C), and vga(D) can be transferred by plasmids and transposons, thereby posing a potential dissemination risk. To investigate pleuromutilin resistance genes in the laying hen production chain in China, 95 samples from five environmental types were collected in four breeding stages to determine the abundances of the main resistance genes by qPCR, i.e. lsa(A), lsa(E), lsa(C), and vga(D). The abundance (5.16 log10GC/g) and detection rate (100%) of lsa(E) was highest in all of the samples, thereby suggesting high contamination with the lsa(E) gene across the large-scale laying hen breeding environment and feces. The lsa(A) (6.02 log10GC/g) and lsa(E) (6.18 log10GC/g) genes were most abundant in flies, and the abundance of vga(D) (4.50 log10GC/g) was highest in dust (P < .05). In addition to feces, flies and dust were important sources of contamination with pleuromutilin resistance along the laying hen production chain. In summary, we determined the abundances of four pleuromutilin resistance genes in the laying hen production chain and provided direct evidence of pleuromutilin resistance transmission and environmental contamination. In particular, the chicken breeding stage needs further attention.


Assuntos
Antibacterianos , Galinhas , Animais , Feminino , Humanos , Antibacterianos/farmacologia , Prevalência , Farmacorresistência Bacteriana Múltipla/genética , Poeira , Pleuromutilinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA