Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 251, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789412

RESUMO

Damage to the ribosome or an imbalance in protein biosynthesis can lead to some human diseases, such as diabetic retinopathy (DR) and other eye diseases. Here, we reported that the kri1l gene was responsible for retinal development. The kri1l gene encodes an essential component of the rRNA small subunit processome. The retinal structure was disrupted in kri1l mutants, which resulted in small eyes. The boundaries of each layer of cells in the retina were blurred, and each layer of cells was narrowed and decreased. The photoreceptor cells and Müller glia cells almost disappeared in kri1l mutants. The lack of photoreceptor cells caused a fear of light response. The development of the retina started without abnormalities, and the abnormalities began two days after fertilization. In the kri1l mutant, retinal cell differentiation was defective, resulting in the disappearance of cone cells and Müller cells. The proliferation of retinal cells was increased, while apoptosis was also enhanced in kri1l mutants. γ-H2AX upregulation indicated the accumulation of DNA damage, which resulted in cell cycle arrest and apoptosis. The kri1l mutation reduced the expression of some opsin genes and key retinal genes, which are also essential for retinal development.

2.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622406

RESUMO

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Assuntos
Metilação de DNA , Hipocampo , Camundongos , Animais , Metilação de DNA/genética , Bromodesoxiuridina/metabolismo , Hipocampo/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Receptores Notch/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
3.
ACS Appl Mater Interfaces ; 16(10): 12117-12148, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421602

RESUMO

Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.


Assuntos
Injúria Renal Aguda , Humanos , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Rim/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Inflamação/tratamento farmacológico
4.
ACS Chem Neurosci ; 14(12): 2320-2332, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289948

RESUMO

Hypoxic preconditioning (HPC) as an endogenous mechanism can resist hypoxia/ischemia injury and exhibit protective effects on neurological function including learning and memory. Although underlying molecular mechanisms remain unclear, HPC probably regulates the expression of protective molecules by modulating DNA methylation. Brain-derived neurotrophic factor (BDNF) activates its signaling upon binding to the tropomyosin-related kinase B (TrkB) receptor, which is involved in neuronal growth, differentiation, and synaptic plasticity. Therefore, this study focused on the mechanism by which HPC regulates BDNF and BDNF/TrkB signaling through DNA methylation to influence learning and memory. Initially, the HPC model was established by hypoxia stimulations on ICR mice. We found that HPC downregulated the expression of DNA methyltransferase (DNMT) 3A and DNMT3B. Then, the upregulation of BDNF expression in HPC mice was generated from a decrease in DNA methylation of the BDNF gene promoter detected by pyrophosphate sequencing. Subsequently, upregulation of BDNF activated BDNF/TrkB signaling and ultimately improved learning and spatial memory in HPC mice. Moreover, after mice were intracerebroventricularly injected with the DNMT inhibitor, the restraint of DNA methylation accompanied by an increase of BDNF and BDNF/TrkB signaling was also discovered. Finally, we observed that the inhibitor of BDNF/TrkB signaling prevented HPC from ameliorating learning and memory in mice. However, the DNMT inhibitor promoted spatial cognition in mice. Thus, we suggest that HPC may upregulate BDNF by inhibiting DNMTs and decreasing DNA methylation of the BDNF gene and then activate BDNF/TrkB signaling to improve learning and memory in mice. This may provide theoretical guidance for the clinical treatment of cognitive dysfunction caused by ischemia/hypoxia disease.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Metilação de DNA , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , Aprendizagem , Camundongos Endogâmicos ICR , Receptor trkB/metabolismo
5.
Oxid Med Cell Longev ; 2022: 9306097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120601

RESUMO

Background: It has been reported that ischemia and ischemic preconditioning (IPC) have different effects on the expression of tuberous sclerosis complex 1 (TSC1), which may contribute to the tolerance to ischemia/hypoxia with the increase of autophagy. The mechanisms of TSC1 differential expression are still unclear under ischemia/IPC conditions in hippocampal Cornu Ammon 1 (CA1) and Cornu Ammon 3 (CA3) area neuronal cells. While we have shown that 5-Aza-CdR, a DNA methyltransferase inhibitor, can upregulate TSC1 and increase hypoxic tolerance by autophagy in vivo and in vitro, in this study, we examined whether DNA methylation was involved in the differential expression of TSC1 in the CA1 and CA3 regions induced by hypoxic preconditioning (HPC). Methods: Level of rapamycin (mTOR) autophagy, a downstream molecular pathway of TSC1/TSC2 complex, was detected in HPC mouse hippocampal CA1 and CA3 areas as well as in the HPC model of mouse hippocampal HT22 cells. DNA methylation level of TSC1 promoter (-720 bp~ -360 bp) was determined in CA1 and CA3 areas by bisulfite-modified DNA sequencing (BMDS). At the same time, autophagy was detected in HT22 cells transfected with GFP-LC3 plasmid. The role of TSC1 in neuroprotection was measured by cell viability and apoptosis, and the role of TSC1 in metabolism was checked by ATP assay and ROS assay in HT22 cells that overexpressed/knocked down TSC1. Results: HPC upregulated the expression of TSC1, downregulated the level of P-mTOR (Ser2448) and P-p70S6K (Thr389), and enhanced the activity of autophagy in both in vivo and in vitro. The increased expression of TSC1 in HPC may depend on its DNA hypomethylation in the promoter region in vivo. HPC also could reduce energy consumption in HT22 cells. Overexpression and knockdown of TSC1 can affect cell viability, cell apoptosis, and metabolism in HT22 cells exposed to hypoxia. Conclusion: TSC1 expression induced by HPC may relate to the downregulation of its DNA methylation level with the increase of autophagy and the decrease of energy demand.


Assuntos
Neuroproteção , Proteínas Quinases S6 Ribossômicas 70-kDa , Trifosfato de Adenosina/metabolismo , Animais , Metilação de DNA/genética , Expressão Gênica , Hipóxia/genética , Hipóxia/metabolismo , Metiltransferases/metabolismo , Camundongos , Neuroproteção/genética , Espécies Reativas de Oxigênio , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Mol Ther Nucleic Acids ; 20: 649-660, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380415

RESUMO

Ischemic tolerance in the brain can be induced by transient limb ischemia, and this phenomenon is termed remote ischemic preconditioning (RIPC). It still remains elusive how this transfer of tolerance occurs. Exosomes can cross the blood-brain barrier, and some molecules may transfer neuroprotective signals from the periphery to the brain. Serum miRNA-126 is associated with ischemic stroke, and exosomal miRNA-126 has shown protective effects against acute myocardial infarction. Therefore, this study aims to explore whether exosomal miRNA-126 from RIPC serum can play a similar neuroprotective role. Exosomes were isolated from the venous serum of four healthy young male subjects, both before and after RIPC. Exosomal miRNA-126 was measured by real-time PCR. The miRNA-126 target sequence was predicted by bioinformatics software. SH-SY5Y neuronal cells were incubated with exosomes, and the cell cycle was analyzed by flow cytometry. The expression and activity of DNA methyltransferase (DNMT) 3B, a potential target gene of miRNA-126, were examined in SH-SY5Y cells. The cell viability of SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD) was also investigated. To confirm the association between miRNA-126 and DNMT3B, we overexpressed miRNA-126 in SH-SY5Y cells using lentiviral transfection. miRNA-126 expression was upregulated in RIPC exosomes, and bioinformatics prediction showed that miRNA-126 could bind with DNMT3B. DNMT levels and DNMT3B activity were downregulated in SH-SY5Y cells incubated with RIPC exosomes. After overexpression of miRNA-126 in SH-SY5Y cells, global methylation levels and DNMT3B gene expression were downregulated in these cells, consistent with the bioinformatics predictions. RIPC exosomes can affect the cell cycle and increase OGD tolerance in SH-SY5Y cells. RIPC seems to have neuroprotective effects by downregulating the expression of DNMTs in neural cells through the upregulation of serum exosomal miRNA-126.

7.
Biomed Pharmacother ; 118: 109219, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31325707

RESUMO

BACKGROUND: Our previous study found that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can repress the expression and activity of protein serine/threonine phosphatase-1γ (PP1γ) in mouse hippocampus. It is well known that PP1γ regulates cell metabolism, which is related to hypoxia/ischaemia tolerance. It has been reported that it can also induce autophagy in cancer cells. Autophagy is important for maintaining cellular homeostasis associated with metabolism. In this study, we examined whether 5-Aza-CdR increases hypoxia tolerance-dependent autophagy by initiating the TSC1/mTOR/autophagy signalling pathway in neuronal cells. METHODS: 5-Aza-CdR was either administered to mice via intracerebroventricular injection (i.c.v) or added to cultured hippocampal-derived neuronal cell line (HT22 cell) in the medium for cell culture. The hypoxia tolerance of mice was measured by hypoxia tolerance time and Perl's iron stain. The mRNA and protein expression levels of tuberous sclerosis complex 1 (TSC1), mammalian target of rapamycin (mTOR) and autophagy marker light chain 3 (LC3) were measured by real-time PCR and western blot. The p-mTOR and p-p70S6k proteins were used as markers for mTOR activity. In addition, the role of autophagy was determined by correlating its intensity with hypoxia tolerance in a time-dependent manner. At the same time, the involvement of the TSC1/mTOR pathway in autophagy was also examined through transfection with TSC1 (hamartin) plasmid. RESULTS: 5-Aza-CdR was revealed to increase hypoxia tolerance and induce autophagy, accompanied by an increase in mRNA and protein expression levels of TSC1, reduction in p-mTOR (Ser2448) and p-p70S6k (Thr389) protein levels, and an increase in the ratio of LC3-II/LC3-I in both mouse hippocampus and hippocampal-derived neuronal cell line (HT22). The fluorescence intensity of hamartin was enhanced in the hippocampus of mice exposed to 5-Aza-CdR. Moreover, HT22 cells that over-expressed TSC1 showed more autophagy. CONCLUSIONS: 5-Aza-CdR can increase hypoxia tolerance by inducing autophagy by initiating the TSC1/mTOR pathway.


Assuntos
Autofagia/efeitos dos fármacos , Decitabina/farmacologia , Neurônios/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Fluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipóxia Encefálica/patologia , Masculino , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética
8.
Biomed Pharmacother ; 109: 701-707, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551522

RESUMO

BACKGROUND: We have previously reported that 5-Aza-2-deoxycytidine (5-Aza-cdR) can repress protein serine/threonine phosphatase-1γ (PP1γ) expression and activity in the mouse hippocampus and affect the behaviour of mice in a water maze. It is well known that the phosphorylation of N-methyl-d-aspartate receptor 2B subunit (NR2B) plays a role in behaviour. In this study, we examined whether 5-Aza-cdR affects NR2B phosphorylation at tyrosine 1472 (p-Y1472 NR2B) and whether it affected the responses of the mice in a passive avoidance test. METHODS: 5-Aza-cdR (10 µM) was administered to mice via intracerebroventricular injection (i.c.v). The learning and memory behaviour of the mice were evaluated by measuring their response in a step-down type passive avoidance test 24 h after the injection. The mRNA level of NR2B was measured by real-time PCR. NR2B and p-Y1472 NR2B protein expression in the mouse hippocampus was detected by western blot and immunofluorescence. CDK5 activity was detected by the ADP-Glo™ + CDK5/p35 Kinase Enzyme System. To further clarify whether the 5-Aza-cdR effects on behaviour were dependent on cellular proliferation or not, the effect of 5-Aza-cdR on the expression level of NR2B, the phosphorylation level of p-Y1472 NR2B, cell viability and the cell cycle were analysed using the immortalized mouse hippocampal neuronal cells neural cell line HT22 treated with 10 µM 5-Aza-cdR compared with an untreated control group. RESULTS: After injection with 5-Aza-cdR, the behaviour of the mice in the step-down test was improved, while their phosphorylation level of p-Y1472 NR2B was increased and their CDK5 activity was decreased in the hippocampus. In vitro experiments showed 10 µM 5-Aza-cdR increased the p-Y1472 NR2B phosphorylation level with inhibition of cell viability and cell cycle arrest. CONCLUSIONS: Our results suggested that the effect of 5-Aza-cdR on behaviour may be related to the increase in phosphorylation of p-Y1472 NR2B in the hippocampus.


Assuntos
Aprendizagem da Esquiva/fisiologia , Decitabina/farmacologia , Hipocampo/metabolismo , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Tirosina/genética
9.
Sci China Life Sci ; 61(5): 559-568, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29230638

RESUMO

The present study aimed to explore the potential of the sodium hyaluronate-CNTF (ciliary neurotrophic factor) scaffold in activating endogenous neurogenesis and facilitating neural network re-formation after the adult rat spinal cord injury (SCI). After completely cutting and removing a 5-mm adult rat T8 segment, a sodium hyaluronate-CNTF scaffold was implanted into the lesion area. Dil tracing and immunofluorescence staining were used to observe the proliferation, differentiation and integration of neural stem cells (NSCs) after SCI. A planar multielectrode dish system (MED64) was used to test the electrophysiological characteristics of the regenerated neural network in the lesioned area. Electrophysiology and behavior evaluation were used to evaluate functional recovery of paraplegic rat hindlimbs. The Dil tracing and immunofluorescence results suggest that the sodium hyaluronate-CNTF scaffold could activate the NSCs originating from the spinal cord ependymal, and facilitate their migration to the lesion area and differentiation into mature neurons, which were capable of forming synaptic contact and receiving glutamatergic excitatory synaptic input. The MED64 results suggest that functional synapsis could be established among regenerated neurons as well as between regenerated neurons and the host tissue, which has been evidenced to be glutamatergic excitatory synapsis. The electrophysiology and behavior evaluation results indicate that the paraplegic rats' sensory and motor functions were recovered in some degree. Collectively, this study may shed light on paraplegia treatment in clinics.


Assuntos
Fator Neurotrófico Ciliar/química , Ácido Hialurônico/química , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Movimento Celular , Modelos Animais de Doenças , Feminino , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Células-Tronco Neurais/citologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
10.
Neural Plast ; 2016: 2130901, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819761

RESUMO

To mimic multilevel nerve root compression and intervertebral foramina stenosis in human, we established a new animal model of the chronic compression of unilateral multiple lumbar DRGs (mCCD) in the rat. A higher occurrence of signs of spontaneous pain behaviors, such as wet-dog shaking and spontaneous hind paw shrinking behaviors, was firstly observed from day 1 onward. In the meantime, the unilateral mCCD rat exhibited significant bilateral hind paw mechanical and cold allodynia and hyperalgesia, as well as a thermal preference to 30°C plate between 30 and 35°C. The expression of activating transcription factor 3 (ATF3) was significantly increased in the ipsilateral and contralateral all-sized DRG neurons after the mCCD. And the expression of CGRP was significantly increased in the ipsilateral and contralateral large- and medium-sized DRG neurons. ATF3 and CGRP expressions correlated to evoked pain hypersensitivities such as mechanical and cold allodynia on postoperative day 1. The results suggested that bilateral neuropathy of primary sensory neurons might contribute to bilateral hypersensitivity in the mCCD rat.


Assuntos
Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Síndromes de Compressão Nervosa/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Hiperalgesia/etiologia , Masculino , Síndromes de Compressão Nervosa/complicações , Medição da Dor , Doenças do Sistema Nervoso Periférico/etiologia , Ratos , Ratos Sprague-Dawley
11.
Cell Mol Neurobiol ; 31(8): 1171-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21643997

RESUMO

Inosine is a purine nucleoside and is considered protective to neural cells including neurons and astrocytes against hypoxic injury. However, whether oligodendrocytes (OLs) could also be protected from hypoxia by inosine is not known. Here we investigated the effects of inosine on primarily cultured rat OLs injured by rotenone-mediated chemical hypoxia, and the mechanisms of the effects using ATP assay, MTT assay, PI-Hoechst staining, TUNEL, and immunocytochemistry. Results showed that rotenone exposure for 24 h caused cell death and impaired viability in both immature and mature OLs, while pretreatment of 10 mM inosine 30 min before rotenone administration significantly reduced cell death and improved the viability of OLs. The same concentration of inosine given 120 min after rotenone exposure also improved viability of injured mature OLs. Immunocytochemistry for nitrotyrosine and cellular ATP content examination indicated that inosine may protect OLs by providing ATP and scavenging peroxynitrite for cells. In addition, immature OLs were more susceptible to hypoxia than mature OLs; and at the similar degree of injury, inosine protected immature and mature OLs differently. Quantitative real-time PCR revealed that expression of adenosine receptors was different between these two stages of OLs. These data suggest that inosine protect OLs from hypoxic injury as an antioxidant and ATP provider, and the protective effects of inosine on OLs vary with cell differentiation, possibly due to the adenosine receptors expression profile. As OLs form myelin in the central nervous system, inosine could be used as a promising drug to treat demyelination-involved disorders.


Assuntos
Hipóxia/induzido quimicamente , Inosina/farmacologia , Inseticidas/farmacologia , Oligodendroglia/efeitos dos fármacos , Rotenona/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Marcação In Situ das Extremidades Cortadas , Oligodendroglia/citologia , Ratos
12.
PLoS One ; 6(4): e18681, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21541342

RESUMO

In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Ativação do Canal Iônico/efeitos dos fármacos , Neurônios/patologia , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Animais , Gânglios Espinais/fisiopatologia , Hiperalgesia/complicações , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/patologia , Neurônios/efeitos dos fármacos , Radiculopatia/complicações , Radiculopatia/patologia , Radiculopatia/fisiopatologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA