Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 17(5): e202400023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576140

RESUMO

Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.


Assuntos
Luz , Humanos , Saúde , Fototerapia , Iluminação
2.
Pharmacol Res ; 203: 107174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580185

RESUMO

The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the clinical treatment for tumor. However, the low response rate of ICIs remains the major obstacle for curing patients and effective approaches for patients with primary or secondary resistance to ICIs remain lacking. In this study, immune stimulating agent unmethylated CG-enriched (CpG) oligodeoxynucleotide (ODN) was locally injected into the tumor to trigger a robust immune response to eradicate cancer cells, while anti-CD25 antibody was applied to remove immunosuppressive regulatory T cells, which further enhanced the host immune activity to attack tumor systematically. The combination of CpG and anti-CD25 antibody obtained notable regression in mouse melanoma model. Furthermore, rechallenge of tumor cells in the xenograft model has resulted in smaller tumor volume, which demonstrated that the combinational treatment enhanced the activity of memory T cells. Remarkably, this combinational therapy presented significant efficacy on multiple types of tumors as well and was able to prevent relapse of tumor partially. Taken together, our combinational immunotherapy provides a new avenue to enhance the clinical outcomes of patients who are insensitive or resistant to ICIs treatments.


Assuntos
Oligodesoxirribonucleotídeos , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Oligodesoxirribonucleotídeos/uso terapêutico , Oligodesoxirribonucleotídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/terapia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Vacinação , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Int J Nanomedicine ; 18: 5327-5342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746047

RESUMO

Introduction: Periodontitis is a chronic inflammatory disease that causes alveolar bone loss. Diabetes is one of the most important factors contributing to periodontitis. Exosomes derived from mesenchymal stem cells (MSCs-Exo) have been reported to promote bone regeneration. This study aimed to examine the function and mechanism of exosomes derived from periodontal ligament stem cells (PDLSCs-Exo) in regulating periodontal regeneration in diabetic periodontitis. Methods: Exosomes derived from normal-glucose-cultured PDLSCs (NG-PDLSCs-Exo) and high-glucose-preconditioned PDLSCs (HG-PDLSCs-Exo) were used. Their effects on RAW264.7 cells were investigated by TRAP staining and quantitative real time-polymerase chain reaction (qRT-PCR). The role of exosomal miR-31-5p in osteoclast differentiation was tested using qRT-PCR, double luciferase analysis, and Western blotting. We investigated the effects of these two types of PDLSCs-Exo on alveolar bone loss in vivo in mice with experimental periodontitis. Results: PDLSCs-Exo were transferred to RAW264.7, and HG-PDLSCs-Exo inhibited osteoclast formation to a lesser extent than NG-PDLSCs-Exo. Further studies revealed the effect of PDLSCs-Exo on osteoclastogenesis via the miR-31-5p/eNOS signaling pathway. In mice with experimental periodontitis, PDLSCs-Exo reduced alveolar bone destruction and decreased the number of osteoclasts on the alveolar bone surface. Conclusion: Our results suggest that exosomal miR-31-5p derived from PDLSCs regulates alveolar bone regeneration by targeting eNOS.


Assuntos
Perda do Osso Alveolar , Exossomos , MicroRNAs , Animais , Camundongos , Ligamento Periodontal , Células-Tronco , Modelos Animais de Doenças , Glucose , MicroRNAs/genética
4.
Heliyon ; 9(5): e15812, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37305501

RESUMO

Although some important advances have been achieved in clinical and diagnosis in the past few years, the management of non-small cell lung cancer (NSCLC) is ultimately dissatisfactory due to the low overall cure and survival rates. Epidermal growth factor (EGFR) has been recognized as a carcinogenic driver and is a crucial pharmacological target for NSCLC. DMU-212, an analog of resveratrol, has been reported to have significant inhibitory effects on several types of cancer. However, the effect of DMU-212 on lung cancer remains unclear. Therefore, this study aims to determine the effects and underlying mechanism of DMU-212 on EGFR-mutant NSCLC cells. The data found that the cytotoxicity of DMU-212 on three EGFR-mutant NSCLC cell lines was significantly higher than that of normal lung epithelial cell. Further study showed that DMU-212 can regulate the expression of cell cycle-related proteins including p21 and cyclin B1 to induce G2/M phase arrest in both H1975 and PC9 cells. Moreover, treatment with DMU-212 significantly promoted the activation of AMPK and simultaneously down-regulated the expression of EGFR and the phosphorylation of PI3K, Akt and ERK. In conclusion, our study suggested that DMU-212 inhibited the growth of NSCLCs via targeting of AMPK and EGFR.

5.
Aging Dis ; 14(4): 1123-1144, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163430

RESUMO

Aging is accompanied by physical dysfunction and physiologic degeneration that occurs over an individual's lifetime. Human teeth, like many other organs, inevitably undergo chronological aging and age-related changes throughout the lifespan, resulting in a substantial need for preventive, restorative as well as periodontal dental care. This is particularly the case for seniors at 65 years of age and those older but economically disadvantaged. Dental aging not only interferes with normal chewing and digestion, but also affects daily appearance and interpersonal communications. Further dental aging can incur the case of multiple disorders such as oral cancer, encephalitis, and other systemic diseases. In the next decades or even hundreds of years, the proportion of the elderly in the global population will continue to rise, a tendency that attracts increasing attention across multiple scientific and medical disciplines. Dental aging will bring a variety of problems to the elderly themselves and poses serious challenges to the medical profession and social system. A reduced, but functional dentition comprising 20 teeth in occlusion has been proposed as a measurement index of successful dental aging. Healthy dental aging is critical to healthy aging, from both medical and social perspectives. To date, biomedical research on the causes, processes and regulatory mechanisms of dental aging is still in its infancy. In this article, updated insights into typical manifestations, associated pathologies, preventive strategies and molecular changes of dental aging are provided, with future research directions largely projected.

6.
Pharmacol Res ; 191: 106739, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948327

RESUMO

Nearly half of all Asian non-small cell lung cancer (NSCLC) patients harbour epidermal growth factor receptor (EGFR) mutations, and first-generation EGFR tyrosine kinase inhibitors (TKIs) are one of the first-line treatments that have improved the outcomes of these patients. Unfortunately, 20% of these patients can not benefit from the treatment. The basis of this primary resistance is poorly understood. Therefore, overcoming EGFR-TKI primary resistance and maintaining the efficacy of TKIs has become a key issue. ß-Elemene, a sesquiterpene compound extracted from Curcuma aromatica Salisb. (wenyujing), has shown potent antitumor effects. In this research, we found that ß-elemene combined with erlotinib enhanced the cytotoxicity of erlotinib to primary EGFR-TKI-resistant NSCLC cells with EGFR mutations and that ferroptosis was involved in the antitumor effect of the combination treatment. We found that lncRNA H19 was significantly downregulated in primary EGFR-TKI-resistant NSCLC cell lines and was upregulated by the combination treatment. Overexpression or knockdown of H19 conferred sensitivity or resistance to erlotinib, respectively, in both in vitro and in vivo studies. The high level of H19 enhanced the cytotoxicity of erlotinib by inducing ferroptosis. In conclusion, our data showed that ß-elemene combined with erlotinib could enhance sensitivity to EGFR-TKIs through induction of ferroptosis via H19 in primary EGFR-TKI-resistant lung cancer, providing a promising strategy to overcome EGFR-TKI resistance in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , RNA Longo não Codificante , Sesquiterpenos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , RNA Longo não Codificante/genética , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
7.
Vaccines (Basel) ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851271

RESUMO

Conventional vaccines are widely used to boost human natural ability to defend against foreign invaders, such as bacteria and viruses. Recently, therapeutic cancer vaccines attracted the most attention for anti-cancer therapy. According to the main components, it can be divided into five types: cell, DNA, RNA, peptide, and virus-based vaccines. They mainly perform through two rationales: (1) it trains the host immune system to protect itself and effectively eradicate cancer cells; (2) these vaccines expose the immune system to molecules associated with cancer that enable the immune system to recognize and destroy cancer cells. In this review, we thoroughly summarized the potential strategies and technologies for developing cancer vaccines, which may provide critical achievements for overcoming the suppressive tumor microenvironment through vaccines in solid tumors.

8.
BMC Med ; 20(1): 470, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482371

RESUMO

BACKGROUND: The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective. METHODS: Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME. The ex vivo and in vivo studies were carried out to evaluate the anti-tumor effect. Proteomics was applied to identify the potential target and signaling pathways. CRISPR-Cas9 was used to knock out target genes. The changes of immune cells were monitored by flow cytometry. The correlation between PKCδ and PD-L1 was verified by clinical samples. RESULTS: We proposed that PKCδ, a gatekeeper of immune homeostasis with kinase activity, is responsible for the un-inflamed phenotype in EGFR-mutated lung tumors. It promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to immune exclusion and assists cancer cell escape from T cell surveillance. Ablation of PKCδ enhances the intratumoral penetration of T cells and suppresses the growth of tumors. Furthermore, blocking PKCδ significantly sensitizes the tumor to immune checkpoint blockade (ICB) therapy (αPD-1) in vitro and in vivo model. CONCLUSIONS: These findings revealed that PKCδ is a critical switch to induce inflamed tumors and consequently enhances the efficacy of ICB therapy in EGFR-mutated lung cancer. This opens a new avenue for applying immunotherapy against recalcitrant tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína Quinase C-delta , Humanos , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteômica , Microambiente Tumoral , Proteína Quinase C-delta/genética
9.
Cell Death Dis ; 13(11): 931, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344505

RESUMO

A low response rate to immune checkpoint inhibitor (ICI) therapy has impeded its clinical use. As reported previously, an inflamed tumor microenvironment (TME) was directly correlated with patients' response to immune checkpoint blockade (ICB). Thus, restoring the cytotoxic effect of immune cells in the TME is a promising way to improve the efficacy of ICB and overcome primary resistance to immunotherapy. The effect of Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) in facilitating T cell activation was determined in vitro and in vivo. Subsets of immune cells were analyzed by flow cytometry. Proteomics was carried out to comprehensively analyze the discriminated cellular kinases and transcription factors. The combinational efficacy of PA-MSHA and αPD-1 therapy was studied in vivo. In this study we demonstrated that PA-MSHA, which is a clinically used immune adjuvant, effectively induced the anti-tumor immune response and suppressed the growth of non-small cell lung cancer (NSCLC) cells. PA-MSHA showed great potential to sensitize refractory "cold" tumors to immunotherapy. It effectively enhanced macrophage M1 polarization and induced T cell activation. In vivo, in combination with αPD-1, PA-MSHA suppressed tumor growth and prolonged the survival time of allograft model mice. These results indicate that PA-MSHA is a potent agent to stimulate immune cells infiltration into the TME and consequently induces inflammation in tumors. The combination of PA-MSHA with αPD-1 is a potential strategy to enhance the clinical response rate to ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Microambiente Tumoral , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Pseudomonas aeruginosa
10.
Artigo em Inglês | MEDLINE | ID: mdl-36387354

RESUMO

Diabetic osteoporosis (DOP) is a metabolic disease which is characterized by impaired bone microarchitecture and reduced bone mineral density resulting from hyperglycemia. Curcumin, an effective component extracted from Curcuma longa, exhibits antioxidation, regulation of bone metabolism and hypoglycemic effects. The BMSC-mediated osteogenesis and angiogenesis coupling seems to be important in bone formation and regeneration. We aimed to explore the effect of curcumin on BMSC-mediated osteogenesis-angiogenesis coupling in high glucose conditions and underlying mechanisms. Our results showed that high glucose impaired the osteogenic and proangiogenic ability of BMSCs and that curcumin pretreatment rescued the BMSC dysfunction induced by high-concentration glucose. Inhibition of the high glucose-activated NF-κB signaling pathway has been found to contribute to the protective effects of curcumin on high glucose-inhibited coupling of osteogenesis and angiogenesis in BMSCs. Furthermore, accelerated bone loss and decreased type H vessels were observed in diabetic osteoporosis mice models. However, curcumin treatment prevented bone loss and promoted vessel formation in diabetic osteoporosis mice. Based on these results, we concluded that curcumin ameliorated diabetic osteoporosis by recovering the osteogenesis and angiogenesis coupling of BMSCs in hyperglycemia, partly through inhibiting the high glucose-activated NF-κB signaling pathway.

11.
Pharmacol Res ; 182: 106282, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662630

RESUMO

Bacteria-based immunotherapy has become a promising strategy to induce innate and adaptive responses for fighting cancer. The advantages of bacteriolytic tumor therapy mainly lie in stimulation of innate immunity and colonization of some bacteria targeting the tumor microenvironment (TME). These bacteria have cytotoxic proteins and immune modulating factors that can effectively restrain tumor growth. However, cancer is a multifactorial disease and single therapy is typically unable to eradicate tumors. Rapid progress has been made in combining bacteria with nanotechnology. Using the nanomolecular properties of bacterial products for tumor treatment preserves many features from the original bacteria while providing some unique advantages. Nano-bacterial therapy can enhance permeability and retention of drugs, increase the tolerability of the targeted drugs, promote the release of immune cell mediators, and induce immunogenic cell death pathways. In addition, combining nano-bacterial mediated antitumor therapeutic systems with modern therapy is an effective strategy for overcoming existing barriers in antitumor treatment and can achieve satisfactory therapeutic efficacy. Overall, exploring the immune antitumor characteristics of adjuvant clinical treatment with bacteria can provide potential efficacious treatment strategies for combatting cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Bactérias/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/patologia , Microambiente Tumoral
12.
Pharmacol Res ; 179: 106198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367343

RESUMO

Despite recent advances in diagnosis and therapeutic strategies, treatment of non-small-cell lung cancer (NSCLC) remains unsatisfactory in terms of prognosis. Andrographolide (AD), a principal active component of Andrographis paniculata (Burm.f.) Nees, exerts anti-cancer therapeutic properties. AD has been used for centuries in China for clinical treatment of viral infections. However, the pharmacological biology of AD in NSCLC remains unknown. In this study, AD regulated autophagy and PD-L1 expression in NSCLC. Molecular dynamics simulations indicated that AD bound directly to signal transducer and activator of transcription-3 (STAT3) with high affinity. Proteomics analysis indicated that AD reduced the expression of tumour PD-L1 in NSCLC by suppressing JAK2/STAT3 signalling. AD modulated the P62-dependent selective autophagic degradation of PD-L1 by inhibiting STAT3 phosphorylation. In vivo study revealed that AD suppressed tumour growth in H1975 xenograft mice and Lewis lung carcinoma cell models, and better efficacy was obtained at higher concentrations. AD prolonged the survival time of the mice and enhanced the treatment efficacy of anti-PD-1 mAb immunotherapy by stimulating CD8+ T cell infiltration and function. This work elucidated the specific mechanism by which AD inhibited NSCLC. Treatment with the combination of AD and anti-PD-1 mAb immunotherapy could be a potential strategy for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Autofagia , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diterpenos , Humanos , Imunidade , Neoplasias Pulmonares/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Chem Biol Drug Des ; 99(1): 83-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288496

RESUMO

Lung cancer is the leading cause of cancer death. Pyronaridine, a synthetic drug of artemisinin, has been used in China for over 30 years for the treatment of malaria, but its effect on non-small cell lung cancer (NSCLC) cells is rarely reported. In this study, we determined the efficacy of pyronaridine in four different NSCLC cell lines and explored its mechanism in H1975. The data showed that pyronaridine could upregulate the expression of TNF-related apoptosis-inducing ligand (TRAIL)-mediated death receptor 5 to promote cellular apoptosis. Meanwhile, the JNK (c-Jun N-terminal kinase) level was detected to be significantly increased after treating with pyronaridine. We used JNK inhibitor and found that it could partially inhibit cell apoptosis. The results showed that epidermal growth factor receptor (EGFR), PI3K, and AKT were downregulated after the treatment of pyronaridine. In summary, pyronaridine can selectively kill NSCLC by regulating TRAIL-mediated apoptosis and downregulating the protein level of EGFR. It is a promising anticancer drug for NSCLC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Naftiridinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Naftiridinas/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Gut ; 71(4): 734-745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34006584

RESUMO

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Panax , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Morte Celular , Microbioma Gastrointestinal/fisiologia , Humanos , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Cinurenina/farmacologia , Ligantes , Neoplasias Pulmonares/terapia , Camundongos , Panax/metabolismo , Polissacarídeos/farmacologia , Triptofano/farmacologia
15.
Pharmacol Res ; 169: 105656, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964470

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Ativação Linfocitária/efeitos dos fármacos , Camundongos Nus , Naftoquinonas/farmacologia , Transplante de Neoplasias
16.
Cancer Lett ; 515: 36-48, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052328

RESUMO

Upregulated expression of immune checkpoint molecules correlates with exhausted phenotype and impaired function of cytotoxic T cells to evade host immunity. By disrupting the interaction of PD-L1 and PD1, immune checkpoint inhibitors can restore immune system function against cancer cells. Growing evidence have demonstrated apigenin and luteolin, which are flavonoids abundant in common fruits and vegetables, can suppress growth and induce apoptosis of multiple types of cancer cells with their potent anti-inflammatory, antioxidant and anticancer properties. In this study, the effects and underlying mechanisms of luteolin, apigenin, and anti-PD-1 antibody combined with luteolin or apigenin on the PD-L1 expression and anti-tumorigenesis in KRAS-mutant lung cancer were investigated. Luteolin and apigenin significantly inhibited lung cancer cell growth, induced cell apoptosis, and down-regulated the IFN-γ-induced PD-L1 expression by suppressing the phosphorylation of STAT3. Both luteolin and apigenin showed potent anti-cancer activities in the H358 xenograft and Lewis lung carcinoma model in vivo, and the treatment with monoclonal PD1 antibody enhanced the infiltration of T cells into tumor tissues. Apigenin exhibited anti-tumor activity in Genetically engineered KRASLA2 mice. In conclusion, both apigenin and luteolin significantly suppressed lung cancer with KRAS mutant proliferation, and down-regulated the IFN-γ induced PD-L1 expression. Treatment with the combination of PD-1 blockade and apigenin/luteolin has a synergistic effect and might be a prospective therapeutic strategy for NSCLC with KRAS-mutant.


Assuntos
Apigenina/farmacologia , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Luteolina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Interferon gama/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus
17.
J Exp Clin Cancer Res ; 39(1): 249, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208183

RESUMO

BACKGROUND: Accumulating evidence showed that regulating tumor microenvironment plays a vital role in improving antitumor efficiency. Programmed Death Ligand 1 (PD-L1) is expressed in many cancer cell types, while its binding partner Programmed Death 1 (PD1) is expressed in activated T cells and antigen-presenting cells. Whereas, its dysregulation in the microenvironment is poorly understood. In the present study, we confirmed that evodiamine downregulates MUC1-C, resulting in modulating PD-L1 expression in non-small cell lung cancer (NSCLC). METHODS: Cell viability was measured by MTT assays. Apoptosis, cell cycle and surface PD-L1 expression on NSCLC cells were analyzed by flow cytometry. The expression of MUC1-C and PD-L1 mRNA was measured by real time RT-PCR methods. Protein expression was examined in evodiamine-treated NSCLC cells using immunoblotting or immunofluorescence assays. The effects of evodiamine treatment on NSCLC sensitivity towards T cells were investigated using human peripheral blood mononuclear cells and Jurkat, apoptosis and IL-2 secretion assays. Female H1975 xenograft nude mice were used to assess the effect of evodiamine on tumorigenesis in vivo. Lewis lung carcinoma model was used to investigate the therapeutic effects of combination evodiamine and anti-PD-1 treatment. RESULTS: We showed that evodiamine significantly inhibited growth, induced apoptosis and cell cycle arrest at G2 phase of NSCLC cells. Evodiamine suppressed IFN-γ-induced PD-L1 expression in H1975 and H1650. MUC1-C mRNA and protein expression were decreased by evodiamine in NSCLC cells as well. Evodiamine could downregulate the PD-L1 expression and diminish the apoptosis of T cells. It inhibited MUC1-C expression and potentiated CD8+ T cell effector function. Meanwhile, evodiamine showed good anti-tumor activity in H1975 tumor xenograft, which reduced tumor size. Evodiamine exhibited anti-tumor activity by elevation of CD8+ T cells in vivo in Lewis lung carcinoma model. Combination evodiamine and anti-PD-1 mAb treatment enhanced tumor growth control and survival of mice. CONCLUSIONS: Evodiamine can suppress NSCLC by elevating of CD8+ T cells and downregulating of the MUC1-C/PD-L1 axis. Our findings uncover a novel mechanism of action of evodiamine and indicate that evodiamine represents a potential targeted agent suitable to be combined with immunotherapeutic approaches to treat NSCLC cancer patients. MUC1-C overexpression is common in female, non-smoker, patients with advanced-stage adenocarcinoma.


Assuntos
Mucina-1/metabolismo , Extratos Vegetais/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Quinazolinas/uso terapêutico , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Extratos Vegetais/farmacologia , Quinazolinas/farmacologia , Transfecção
18.
Pharmacol Res ; 161: 105129, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783976

RESUMO

Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer. However, there has been little improvement in its cure rate in the last 30 years, due to its intricate heterogeneity and drug resistance. Accumulating evidences have demonstrated that dysregulation of calcium (Ca2+) homeostasis contributes to oncogenesis and promotes tumor development. Inhibitors of Ca2+ channels/transporters to restore intracellular Ca2+ level were found to arrest tumor cell division, induce apoptosis, and suppress tumor growth both in vitro and in vivo. Dolutegravir (DTG), which is a first-line drug for Acquired Immune Deficiency Syndrome (AIDs) treatment, has been shown to increase intracellular Ca2+ levels and Reactive oxygen species (ROS) levels in human erythrocytes, leading to suicidal erythrocyte death or eryptosis. To explore the potential of DTG as an antitumor agent, we have designed and synthesized a panel of compounds based on the principle of biologically active substructure splicing of DTG. Our data demonstrated that 7-methoxy-4-methyl-6,8-dioxo-N-(3-(1-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl)-3,4,6,8,12,12a-hexahydro-2H-pyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazine-9-carboxamide (DTHP), a novel derivative of DTG, strongly inhibited the colony-forming ability and proliferation of NSCLC cells, but displayed no cytotoxicity to normal lung cells. DTHP treatment also induced apoptosis and upregulate intracellular Ca2+ level in NSCLC cells significantly. Inhibiting Ca2+ signaling alleviated DTHP-induced apoptosis, suggesting the perturbation of intracellular Ca2+ is responsible for DTHP-induced apoptosis. We further discovered that DTHP activates AMPK signaling pathway through binding to SERCA, a Ca2+-ATPase. On the other hand, DTHP treatment promoted mitochondrial ROS production, causing mitochondrial dysfunction and cell death. Finally, DTHP effectively inhibited tumor growth in the mouse xenograft model of lung cancer with low toxicity to normal organs. Taken together, our work identified DTHP as a superior antitumor agent, which will provide a novel strategy for the treatment of NSCLC with potential clinical application.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Oxazinas/farmacologia , Piperazinas/farmacologia , Piridonas/farmacologia , Células A549 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Chin Med ; 15: 70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32665783

RESUMO

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently was declared a pandemic by world health organization (WHO) Due to sudden outbreaks, currently, no completely effective vaccine or drug is clinically approved. Several therapeutic strategies can be envisaged to prevent further mortality and morbidity. Based on the past contribution of traditional Chinese medicines (TCM) and immune-based therapies as a treatment option in crucial pathogen outbreaks, we aimed to summarize potential therapeutic strategies that could be helpful to stop further spread of SARS-CoV-2 by effecting its structural components or modulation of immune responses. Several TCM with or without modification could be effective against the structural protein, enzymes, and nucleic acid should be tested from available libraries or to identify their immune-stimulatory activities to enhance several antiviral biological agents for effective elimination of SARS-CoV-2 from the host. TCM is not only effective in the direct inhibition of virus attachment and internalization in a cell but can also prevent their replication and can also help to boost up host immune response. Immune-modulatory effects of TCMs may lead to new medications and can guide us for the scientific validity of drug development. Besides, we also summarized the effective therapies in clinical for controlling inflammation. This review will be not only helpful for the current situation of COVID-19, but can also play a major role in such epidemics in the future.

20.
Pharmacol Res ; 159: 104934, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32464330

RESUMO

Tyrosine kinase inhibitors (TKIs) have been widely used for the clinical treatment of patients with non-small cell lung cancer (NSCLC) harboring mutations in the EGFR. Unfortunately, due to the secondary mutation in EGFR, eventual drug-resistance is inevitable. Therefore, to overcome the resistance, new agent is urgently required. Chelidonine, extracted from the roots of Chelidonium majus, was proved to effectively suppress the growth of NSCLC cells with EGFR double mutation. Proteomics analysis indicated that mitochondrial respiratory chain was significantly inhibited by chelidonine, and inhibitor of AMPK effectively blocked the apoptosis induced by chelidonine. Molecular dynamics simulations indicated that chelidonine could directly bind to EGFR and showed a much higher binding affinity to EGFRL858R/T790M than EGFRWT, which demonstrated that chelidonine could selectively inhibit the phosphorylation of EGFR in cells with EGFR double-mutation. In vivo study revealed that chelidonine has a similar inhibitory effect like second generation TKI Afatinib. In conclusion, targeting EGFR and inhibition of mitochondrial function is a promising anti-cancer therapeutic strategy for inhibiting NSCLC with EGFR mutation and TKI resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Mutação , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA