Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(6): 3071-3079, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309926

RESUMO

In this study, 24-hour backward trajectories of the air mass in Nanjing were calculated by using the HYSPLIT model with the NCEP global reanalysis data from March 2019 to February 2020. The backward trajectories combined with the hourly concentration data of PM2.5 were then utilized in the trajectory clustering analysis and potential pollution source analysis. The results showed that the average concentration of PM2.5 in Nanjing was(36±20) µg·m-3 during the study period, with 17 days exceeding the grade Ⅱ national ambient air quality standards (75 µg·m-3). PM2.5 concentration exhibited clear seasonal variation, with winter (49 µg·m-3)>spring (42 µg·m-3)>autumn (31 µg·m-3)>summer (24 µg·m-3). PM2.5 concentration was significantly positively correlated with surface air pressure but significantly negatively correlated with air temperature, relative humidity, precipitation, and wind speed. Based on the trajectories, seven transport routes were identified in spring, and six routes for the other seasons. The northwest and south-southeast routes in spring, southeast route in autumn, and southwest route in winter were the main pollution transport routes in each season, with the characteristics of short transport distance and slow air mass movement, indicating that local accumulation was one of the main reasons for the high value of PM2.5 in quiet and stable weather. The distance of the northwest route in winter was large, and the PM2.5 concentration was 58 µg·m-3, which was the 2nd highest concentration in all routes, indicating that the cities in the northeast of Anhui had a great transport influence on Nanjing PM2.5. The distribution of PSCF and CWT was relatively consistent, and the main potential source areas were mainly local and adjacent areas of Nanjing, indicating that PM2.5 control is needed to strengthen local control and carry out joint prevention and control with adjacent areas. Winter was most affected by transport, its main potential source area was located at the junction of northwest Nanjing and Chuzhou, and the main source origin was in Chuzhou; therefore joint prevention and control should be expanded to Anhui.

2.
Huan Jing Ke Xue ; 42(1): 88-96, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372460

RESUMO

In this study, the 24-hour backward trajectories of air mass at ground level(10 m)in Nanjing were calculated by using the HYSPLIT model with the NCEP global reanalysis data from April 1st to October 31st, 2017. The backward trajectories were then combined with the hourly concentration data of O3 in Nanjing for trajectories clustering analysis and potential pollution sources analysis. The results show that in 2017, the maximum daily 8 h running average O3 level in Nanjing was around 12-261 µg·m-3 with 58 days of O3 pollution in Nanjing, mainly in the spring and summer. The monthly variation of O3 showed a single peak, with the highest O3 concentration, as well as the most days exceeding the standard, occurring in June; the diurnal variation of O3 was unimodal and reached its peak around 14:00. A total number of 5136 trajectories were obtained by simulation, among which the exceeded trajectories accounted for approximately 10%. The exceedance trajectories in May and June were significantly higher, accounting for 60% of the total exceedance trajectories. Six ground-level air mass transporting pathways were identified through clustering analysis, from the NNE, NW, SW, SSE, SE, and NE directions. The SE and SSE directions with higher O3 levels were the dominant transport routes of O3 pollution, contributing to 23.33% and 20.76% of backward trajectories, respectively. As for the potential pollution source analysis, the area with high WCWT value distribution matched the WPSCF result, indicating that the potential sources of O3 pollution were mainly distributed in Changzhou, Wuxi, Suzhou, Huzhou, and other cities around Taihu Lake. Additionally, cities located around Nanjing, such as Taizhou, Ma'anshan, Wuhu, Chuzhou, Nantong, and Lianyungang, were considered the secondary potential sources. The results indicate that O3 pollution in Nanjing is a regional issue and its control requires joint prevention and control strategies in the Yangtze River Delta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA