RESUMO
BACKGROUND: Cross-sectional evidence suggests a higher burden of chronic respiratory diseases in people with inflammatory bowel disease, but there is a lack of prospective evidence to clarify the direction of their associations. AIM: To investigate the association of inflammatory bowel disease with the risk of two major chronic respiratory diseases, chronic obstructive pulmonary disease and asthma. METHODS: We included 430,414 participants from UK Biobank and followed them from recruitment (2006-2010) to 2021. Chronic obstructive pulmonary disease and asthma cases were obtained from inpatient data and death register. Using Cox proportional hazards models, we estimated the multivariable-adjusted hazard ratios (HR) of developing chronic obstructive pulmonary disease and asthma in participants with inflammatory bowel disease compared with inflammatory bowel disease-free groups. We also investigated the association among Crohn's disease and ulcerative colitis with the risk of chronic obstructive pulmonary disease and asthma. RESULTS: Over a median follow-up of 11.9 years, there were 11,196 incident chronic obstructive pulmonary disease and 9831 asthma cases. The adjusted HRs of developing chronic obstructive pulmonary disease (HR=1.54, 95% CI: 1.33-1.79) and asthma (HR=1.52, 95% CI: 1.29-1.79) were higher for those with inflammatory bowel disease when compared with inflammatory bowel disease-free participants. Participants with Crohn's disease and ulcerative colitis were also found to have a higher risk of chronic obstructive pulmonary disease (Crohn's disease: HR=1.71; 95% CI: 1.36-2.15; ulcerative colitis: HR=1.45; 95% CI: 1.20-1.75) and asthma (Crohn's disease: HR=1.73; 95%CI: 1.33-2.25; ulcerative colitis: HR=1.41; 95%CI: 1.15-1.73) when compared with those free of inflammatory bowel disease. CONCLUSIONS: This study suggested that individuals with inflammatory bowel disease have a higher risk of developing chronic obstructive pulmonary disease and asthma, highlighting the importance of preventing chronic respiratory diseases among inflammatory bowel disease patients.
RESUMO
Enhancing the activity and CO poisoning resistance of Pt-based catalysts for the anodic hydrogen oxidation reaction (HOR) poses a significant challenge in the development of proton exchange membrane fuel cells. Herein, we leverage theoretical calculations to demonstrate that tungsten nitride (WN) can intricately modulate the electronic structure of Pt. This modulation optimizes the hydrogen adsorption, significantly boosting HOR activity, and simultaneously weakens the CO adsorption, markedly improving resistance to CO poisoning. Through prescreening with rational design, we synthesized an efficient catalyst comprising a minimal Pt content (only 1.4 wt %) supported on the small-sized WN/reduced graphite oxide (Pt@WN/rGO). As anticipated, this catalyst showcases a remarkable acidic HOR mass activity of 3060 A gPt-1, which is approximately 11.8 times greater than that of the commercial 20 wt % Pt/C catalyst. Impressively, it maintains high activity with 98.2% retention even in the presence of 1000 ppm of CO, indicating exceptional poison resistance. Operando synchrotron radiation analyses reveal that WN harmonizes the electron state of Pt during electrochemical reactions, optimizing hydrogen adsorption/desorption dynamics. This leads to a lower peak potential of CO stripping on Pt@WN/rGO compared to that on Pt/rGO, suggesting that WN mitigates competitive CO adsorption and enhances the availability of hydrogen adsorption sites on Pt. The synergistic effect significantly accelerates HOR activity and increases antipoisoning efficacy. The assembled PEMFC demonstrates substantial tolerance to CO concentration from 10 to 1000 ppm in the H2/CO mixture.
RESUMO
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Assuntos
Ritmo Circadiano , Dano ao DNA , Reparo do DNA , Envelhecimento da Pele , Raios Ultravioleta , Humanos , Animais , Raios Ultravioleta/efeitos adversos , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Pele/efeitos da radiação , Pele/metabolismo , Pele/patologia , Estresse OxidativoRESUMO
Pyroptosis, an immunogenic programmed cell death, could efficiently activate tumor immunogenicity and reprogram immunosuppressive microenvironment for boosting cancer immunotherapy. However, the overexpression of SLC7A11 promotes glutathione biosynthesis for maintaining redox balance and countering pyroptosis. Herein, we develop intermetallics modified with glucose oxidase (GOx) and soybean phospholipid (SP) as pyroptosis promoters (Pd2Sn@GOx-SP), that not only induce pyroptosis by cascade biocatalysis for remodeling tumor microenvironment and facilitating tumor cell immunogenicity, but also trigger disulfidptosis mediated by cystine accumulation to further promote tumor pyroptosis in female mice. Experiments and density functional theory calculations show that Pd2Sn nanorods with an intermediate size exhibit stronger photothermal and enzyme catalytic activity compared with the other three morphologies investigated. The peroxidase-mimic and oxidase-mimic activities of Pd2Sn cause potent reactive oxygen species (ROS) storms for triggering pyroptosis, which could be self-reinforced by photothermal effect, hydrogen peroxide supply accompanied by glycometabolism, and oxygen production from catalase-mimic activity of Pd2Sn. Moreover, the increase of NADP+/NADPH ratio induced by glucose starvation could pose excessive cystine accumulation and inhibit glutathione synthesis, which could cause disulfidptosis and further augment ROS-mediated pyroptosis, respectively. This two-pronged treatment strategy could represent an alternative therapeutic approach to expand anti-tumor immunotherapy.
Assuntos
Glucose Oxidase , Piroptose , Espécies Reativas de Oxigênio , Microambiente Tumoral , Animais , Camundongos , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Glucose Oxidase/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Glutationa/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos Endogâmicos BALB C , Cistina/metabolismoRESUMO
Acute lung injury (ALI) is a lung disease characterized by an excessive inflammatory response and damage to lung epithelial cells. Atractylodin (ATL) has good anti-inflammatory activity and protects the integrity of the epithelial cell barrier. However, the efficacy of ATL in the treatment of ALI and its mechanism is unclear. We investigated the efficacy of ATL in treating ALI and explored its targets and mechanisms. The results showed that ATL significantly reduced the wet-dry ratio of lungs of rats with ALI, improved the pathological changes, and lowered the expression of the inflammatory factors. Combined metabolomic and transcriptomic analyses showed that ATL can reduce inflammation by inhibiting and activating the HIF-1 signaling pathway and modulating ASAH3L to improve galactose metabolism, thereby alleviating ALI. In conclusion, ATL may be a potential drug for the treatment of acute lung injury.
RESUMO
An optimized multi-stage separation strategy was developed to purify lily bulb polyphenol oxidase (PPO) for revealing its molecular structure. The PPO was purified 14.64-fold with high specific activity of 153,900 U/mg via optimized conditions of phosphate buffer pH (6.5), solid-liquid ratio (1:3), PVPP content (2 %), extraction time (4 h), followed by 30 %-50 % ammonium sulfate, diethylaminoethyl ion-exchange chromatography (0.1 M NaCl), and size exclusion chromatography. The PPO was identified as a dimeric protein with molecular weight of 135 kDa, containing 58.79 % random coil, 20.78 % α-helix, 17.41 % ß-folding, and 3.02 % ß-corner. The three-dimensional structure via homology modeling suggested that active center CuA bound to His151, His172, and His181, CuB bound to His307, His311, and His341. Furthermore, molecular docking indicated that its Phe337 and Tyr312 residues were catalytic cavity gates of catechol and 4-methylcatechol, respectively. Therefore, this study successfully analyzed purified PPO structure and further provided a theoretical foundation for its browning mechanism.
RESUMO
Osteoarthritis (OA) is a prevalent degenerative disease characterized by pain and cartilage damage in its later stages, while early OA is marked by the loss of cartilage's mechanical function. Recent studies suggest that Piezo1, a mechanotransducer, may contribute to cartilage degradation under abnormal physical stress. This study investigates the mechanism by which Piezo1 mediates the loss of cartilage's mechanical properties. Using rat chondrocytes cultured in a 3D in vitro model, we found that fluid flow-induced physical stress activates constitutively expressed Piezo1, leading to increased catabolic activity and apoptosis, which, in turn, disrupts the matrix structure. Ex vivo cartilage experiments further demonstrated that the mechanical stress-induced loss of cartilage's physical properties (approximately 10% reduction in relaxation modulus) is mediated by Piezo1 and depends on cell viability. Notably, Piezo1 agonists alone did not alter the mechanical behavior of cartilage tissue. In vivo, using an OA rat model induced by anterior cruciate ligament transection, we observed cartilage integrity degradation and loss of mechanical properties, which were partially mitigated by Piezo1 inhibition. RNA sequencing revealed significant modulation of the PI3K signaling and matrix regulation pathways. Collectively, this study demonstrates that Piezo1-mediated catabolic activity in chondrocytes is a key driver of the loss of cartilage's mechanical function during the relaxation phase.
RESUMO
The skyrmion crystal (SkX) and helix (HL) phases, present in typical chiral magnets, can each be considered as forms of density waves but with distinct topologies. The SkX exhibits gyrodynamics analogous to electrons under a magnetic field, while the HL state resembles topological trivial spin density waves. However, unlike the charge density waves, the theoretical analysis of the sliding motion of SkX and HL remains unclear, especially regarding the similarities and differences in sliding dynamics between these two spin density waves. In this Letter, we systematically explore the sliding dynamics of SkX and HL in chiral magnets in the limit of large current density. We demonstrate that the sliding dynamics of both SkX and HL can be unified within the same theoretical framework as density waves, despite their distinct microscopic orders. Furthermore, we highlight the significant role of gyrotropic sliding induced by impurity effects in the SkX state, underscoring the impact of nontrivial topology on the sliding motion of density waves. Our theoretical analysis shows that the effect of impurity pinning is much stronger in HL compared with SkX, i.e., χ^{SkX}/χ^{HL}â¼α^{2} (χ^{SkX}, χ^{HL}: susceptibility to the impurity potential, α (âª1) is the Gilbert damping). Moreover, the velocity correction is mostly in the transverse direction to the current in SkX. These results are further substantiated by realistic Landau-Lifshitz-Gilbert simulations.
RESUMO
INTRODUCTION: Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES: Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS: Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS: Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS: Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.
RESUMO
Previous studies showed that serum amyloid A (SAA) and macrophages were associated with allergic airway inflammation. However, the interaction between SAA1 and macrophages in allergic airway inflammation remains to be further elucidated. In this study, the levels of SAA1 were measured in nasal tissues from patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), house dust mite (HDM)-treated BEAS-2B cells and the tissues of mice of HDM-induced allergic airway inflammation. Human monocytes-derived macrophages and mouse bone marrow-derived macrophages (BMDMs) were exposed to SAA1, and CCL17 and the other M1/M2-related factors were evaluated using RT-PCR and/or ELISA. To test the effects of SAA1-treated BMDMs on chemotaxis and differentiation of CD4+ T cells, number of migrated cells and the levels of Th1 and Th2 were measured using flow cytometry. SAA1 receptors were examined in BMDMs and lung macrophages of model mice. CD36 neutralizing antibody was applied to explore the mechanisms of SAA1 in regulating BMDMs using RT-PCR and/or ELISA. We found that SAA1 was expressed in epithelial cells, and was increased in the nasal tissues of patients with eosinophilic CRSwNP and HDM-treated BEAS-2B- cells as well as the bronchoalveolar lavage fluid and lung tissues of mice exposed to HDM. We also found that the level of CCL17 was increased in M2 macrophages, more CD4+ T cells were recruited and proportion of Th2 was increased after the treatment of SAA1. The treatment of CD36 neutralizing antibody decreased CCL17 level in SAA1-treated M2 BMDMs. In summary, our results showed that SAA1 was increased in allergic airway inflammation, and the administration of SAA1 upregulated the expression of CCL17 in M2 macrophages via CD36 and promoted the chemotaxis of CD4+ T cells and differentiation of Th2. It may provide a new therapeutic strategy that could mediate allergic airway inflammation via suppressing SAA1 to reduce recruitment of CD4+ T cells and activation of Th2.
Assuntos
Antígenos CD36 , Quimiocina CCL17 , Macrófagos , Pyroglyphidae , Proteína Amiloide A Sérica , Sinusite , Animais , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Humanos , Macrófagos/imunologia , Quimiocina CCL17/metabolismo , Camundongos , Pyroglyphidae/imunologia , Antígenos CD36/metabolismo , Antígenos CD36/genética , Sinusite/imunologia , Feminino , Masculino , Pólipos Nasais/imunologia , Transdução de Sinais , Células Th2/imunologia , Camundongos Endogâmicos BALB C , Linhagem Celular , Pessoa de Meia-Idade , Adulto , Rinite/imunologia , Hipersensibilidade Respiratória/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
The escalating incidence of breast cancer (BC) in women underscores its grave health threat. Current molecular insights into BC's post-adjuvant therapy cure remain elusive, necessitating active treatment explorations. Immunotherapy, notably chemotherapy-induced immunogenic cell death (ICD), has emerged as a promising BC therapy. ICD harnesses chemotherapeutics to activate anti-tumor immunity via DAMPs, fostering long-term T-cell memory and primary BC cure. Besides chemotherapy drugs, Nanodrugs, traditional Chinese medicine (TCM) and ICIs also induce ICD, boosting immune response. ICIs, like PD-1/PD-L1 inhibitors, revolutionize cancer treatment but face limited success in cold tumors. Thus, ICD induction combined with ICIs is studied extensively for BC immunotherapy. This article reviews the mechanism of ICD related drugs in BC and provides reference for the research and development of BC treatment, in order to explore more effective clinical treatment of BC, we hope to explore more ICD inducers and make ICIs more effective vaccines.
Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Feminino , Antineoplásicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Morte Celular/efeitos dos fármacosRESUMO
BACKGROUND: The lipid-lowering effects of Omega-3 fatty acids have been widely reported, yet their impact on ischemic stroke remains controversial. Reports on the protective effects of unsaturated fatty acids, such as Omega-6 and Omega-7, as well as saturated fatty acids in cardiovascular diseases, including hypertension and ischemic stroke, are less frequent. OBJECTIVES: This study aims to identify fatty acids associated with blood pressure and ischemic stroke through Mendelian randomization. Besides, it seeks to determine whether specific fatty acids can prevent ischemic stroke by managing blood pressure and revealing the specific mechanisms of this action. METHODS: This research involved downloading relevant data from websites and extracting SNPs that met the standard criteria as instrumental variables. Simultaneously, the 'MR-PRESSO' package and 'Mendelian Randomization' package were used to eliminate confounding SNPs that could bias the study results. Then, inverse variance weighting and the weighted median were employed as primary analysis methods, accompanied by sensitivity analysis to assess the validity of the causal relationships. Initially, multivariable Mendelian randomization was used to identify fatty acids linked to blood pressure and the incidence of ischemic stroke. The causal link between certain fatty acids and the initiation of ischemic stroke was then investigated using bidirectional and mediator Mendelian randomization techniques. Stepwise Regression and the Product of Coefficients Method in mediator Mendelian randomization were utilized to ascertain whether specific fatty acids reduce ischemic stroke risk by lowering blood pressure. RESULTS: Multivariable Mendelian randomization analysis indicated a potential inverse correlation between Omega-3 intake and both blood pressure and ischemic stroke. Consequently, Omega-3 was selected as the exposure, with blood pressure and ischemic stroke-related data as outcomes, for further bidirectional and mediation Mendelian Randomization analyses. Bidirectional Mendelian Randomization revealed that Omega-3 significantly influences DBP (P = 1.01e-04) and IS (P = 0.016). It also showed that DBP and SBP significantly affect LAS, SVS, CES, IS, and LS. Mediator Mendelian Randomization identified five established mediating pathways: Omega-3-Diastolic blood pressure-Small vessel stroke, Omega-3-Diastolic blood pressure-Cardioembolic stroke, Omega-3-Diastolic blood pressure-Lacunar stroke, Omega-3-Diastolic blood pressure-Large artery atherosclerosis stroke, and Omega-3-Diastolic blood pressure-Ischemic stroke. Of these, four pathways are complete mediation, and one pathway is partial mediation. CONCLUSIONS: The findings suggest that Omega-3 may indirectly reduce the incidence of ischemic stroke by lowering blood pressure. Thus, blood pressure modulation might be one of the mechanisms through which Omega-3 prevents ischemic stroke. In summary, incorporating an increased intake of Omega-3 in the diet can serve as one of the dietary intervention strategies for patients with hypertension. Additionally, it can act as an adjunctive therapy for the prevention of ischemic strokes and their complications.
Assuntos
Pressão Sanguínea , Ácidos Graxos Ômega-3 , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/genética , Hipertensão/genética , Fatores de RiscoRESUMO
Background: Low-density neutrophils are heterogeneous immune cells with immunosuppressive (such as polymorphonuclear myeloid-derived suppressor cells [PMN-MDSC]) or pro-inflammatory (such as low-density granulocytes [LDG]) properties that have been well described in multiple cancers and immune diseases. However, its role in allergic rhinitis (AR) is still unclear. Methods: In the present study, we defined low-density neutrophils as CD14-CD11B+CD15+LOX-1+ (LOX-1+ neutrophils), and their levels in the peripheral blood (PB) were evaluated and compared between patients with AR and healthy donors using flow cytometric analysis. LOX-1 expression on polymorphonuclear neutrophils was identified. Carboxyfluorescein succinimidyl ester (CFSE)-stained CD3+ T cells were cultured alone or with LOX-1+ neutrophils, T cell proliferation was assessed using flow cytometry, and pro-inflammatory cytokines in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). Clinicopathological analyses were performed to gain a thorough understanding of LOX-1+ neutrophils. Results: We determined that LOX-1+ neutrophils were significantly increased in the PB of patients with AR, and LOX-1 expression in neutrophils from patients with AR was elevated. Interestingly, LOX-1+ neutrophils derived from patients with AR, unlike PMN-MDSC, promoted T cell proliferation and pro-inflammatory cytokine production. Moreover, clinicopathological analysis revealed that there was no any relation between circulating LOX-1+ neutrophil levels and the levels of IgE, age and sex. Conclusion: These findings indicate that elevated circulating LOX-1+ neutrophils play a pro-inflammatory role in AR.
RESUMO
Renal fibrosis (RF) is a common endpoint of various chronic kidney diseases, leading to functional impairment and ultimately progressing to end-stage renal failure. Glycolytic reprogramming plays a critical role in the pathogenesis of fibrosis, which maybe a potential therapeutic target for treating renal fibrosis. Here, we revealed the novel role of ZEB1 in renal fibrosis, and whether targeting ZEB1 is the underlying mechanism for the anti-fibrotic effects of ethyl caffeate (EC) to regulate the glycolytic process. Treatment of EC attenuated the renal fibrosis and inhibited ZEB1 expression in vivo and in vitro, reducing the upregulated expression of glycolytic enzymes (HK2, PKM2, PFKP) and key metabolites (lactic acid, pyruvate). ZEB1 overexpression promoted the renal fibrosis and glycolysis, whereas knockout of ZEB1 apparently attenuated renal fibrosis in vivo and in vitro. EC interacted with ZEB1 to modulate the glycolytic enzymes for suppressing the elevated glycolytic reprogramming during renal fibrosis. In summary, our study reveals that ZEB1 plays an important role in regulating glycolytic reprogramming during the renal tubular epithelial cell fibrosis, suggesting inhibition of ZEB1 may be a potential strategy for treating renal fibrosis. Additionally, EC is a potential new drug candidate for the treatment of renal fibrosis and CKD.
RESUMO
Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.
RESUMO
The abuse of kanamycin (KAN) poses an increasing threat to human health by contaminating agricultural and animal husbandry products, drinking water, and more. Therefore, the sensitive detection of trace KAN residues in real samples is crucial for monitoring agricultural pollution, ensuring food safety, and diagnosing diseases. However, traditional assay techniques for KAN rely on bulky instruments and complicated operations with unsatisfactory detection limits. Herein, we developed a novel label-free aptasensor to achieve ultrasensitive detection of KAN by constructing mesoporous DNA-cobalt@carbon nanofibers (DNA-Co@C-NFs) as the recognizer. Leveraging the extended π-conjugation structure, prominent surface area, and abundant pores, the Co@C-NFs can effectively load aptamer strands via π-π stacking interactions, serving as KAN capturer and reporter. Due to the change in DNA configuration upon binding KAN, this aptasensor presented an ultralow detection limit and ultra-wide linear range, along with favorable precision and selectivity. Using real tap water, milk, and human serum samples, the aptasensor accurately reported trace KAN levels. As a result, this convenient and rapid autosensing technique holds promise for onsite testing of other antibiotic residues in agriculture, food safety, and clinical diagnosis.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Carbono , Cobalto , DNA , Canamicina , Nanofibras , Nanofibras/química , Canamicina/análise , Aptâmeros de Nucleotídeos/química , DNA/química , Humanos , Porosidade , Técnicas Biossensoriais/métodos , Cobalto/química , Carbono/química , Leite/química , Limite de Detecção , Animais , Antibacterianos/análise , Antibacterianos/química , Água Potável/análise , Água Potável/químicaRESUMO
The Qilongtian capsule (QLT) is a Chinese patent medicine that has been approved for the treatment of chronic obstructive pulmonary disease (COPD). However, the precise pharmacodynamic material basis and molecular mechanism have not been well illustrated. In this study, we identified the effect of QLT on COPD through a cigarette smoke extract (CSE)/lipopolysaccharide (LPS) induced COPD mice model. The absorption of blood components in QLT were identified using ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to predict the potential targets and therapeutic mechanisms of QLT, which were further validated using in vivo experiments and molecular docking. Pharmacodynamic studies revealed that QLT could ameliorate pulmonary function and pulmonary pathology, reduce collagen fiber accumulation, and attenuate inflammatory responses in mice with CSE/LPS induced COPD. A total of 21 components of QLT absorbed in the blood were detected. Network pharmacology analysis indicated that TNF, IL-6, EGFR, and AKT1 may be the core targets, mainly involving the MAPK signaling pathway. Besides, Sachaloside II, Ginsenoside Rh1, Ginsenoside F1, Rosiridin, and Ginsenoside Rf were the key compounds. Molecular docking results showed that the key components could spontaneously bind to EGFR and MAPK to form a relatively stable conformation. In vivo experiments revealed that QLT could suppress the activation of the EGFR/MAPK signaling pathway, thereby improving lung injury in mice with COPD. Overall, these findings provide evidence for the treatment of COPD with QLT.
RESUMO
The functional neurons are basic building blocks of the nervous system and are responsible for transmitting information between different parts of the body. However, it is less known about the interaction between the neuron and the field. In this work, we propose a novel functional neuron by introducing a flux-controlled memristor into the FitzHugh-Nagumo neuron model, and the field effect is estimated by the memristor. We investigate the dynamics and energy characteristics of the neuron, and the stochastic resonance is also considered by applying the additive Gaussian noise. The intrinsic energy of the neuron is enlarged after introducing the memristor. Moreover, the energy of the periodic oscillation is larger than that of the adjacent chaotic oscillation with the changing of memristor-related parameters, and same results is obtained by varying stimuli-related parameters. In addition, the energy is proved to be another effective method to estimate stochastic resonance and inverse stochastic resonance. Furthermore, the analog implementation is achieved for the physical realization of the neuron. These results shed lights on the understanding of the firing mechanism for neurons detecting electromagnetic field.
RESUMO
Consensus and synchronous firing in neural activities are relative to the physical properties of synaptic connections. For coupled neural circuits, the physical properties of coupling channels control the synchronization stability, and transient period for keeping energy diversity. Linear variable coupling results from voltage coupling via linear resistor by consuming certain Joule heat, and electric synapse coupling between neurons derives from gap junction connection under special electrophysiological condition. In this work, a voltage-controlled electric component with quadratic relation in the i-v (current-voltage) is used to connect two neural circuits composed of two variables. The energy function obtained by using Helmholtz theorem is consistent with the Hamilton energy function converted from the field energy in the neural circuit. Chaotic signals are encoded to approach a mixed signal within certain frequency band, and then its amplitude is adjusted to excite the neuron for detecting possible occurrence of nonlinear resonance. External stimuli are changed to trigger different firing modes, and nonlinear coupling activates changeable coupling intensity. It is confirmed that nonlinear coupling behaves functional regulation as hybrid synapse, and the synchronization transition between neurons can be controlled for reaching possible energy balance. The nonlinear coupling is helpful to keep energy diversity and prevent synchronous bursting because positive and negative feedback is switched with time. As a result, complete synchronization is suppressed and phase lock is controlled between neurons with energy diversity.
RESUMO
BACKGROUND: Chicken coccidiosis is an intracellular parasitic disease that presents major challenges to the development of the commercial poultry industry. Perennial drug selective pressure has led to the multi-drug resistance of chicken coccidia, which makes the prevention and control of chicken coccidiosis extremely difficult. In recent years, natural plant products have attracted the attention of researchers due to their inherent advantages, such as the absence of veterinary drug residues. The development of these natural products provides a new direction for the prevention and treatment of chicken coccidiosis. METHODS: The anticoccidial effect of a natural plant product combination formulation (eucalyptus oil + apigenin + eugenol essential oil) was tested against Eimeria tenella in broilers. To search for the optimal concentration of the combination formulation, we screened 120 broilers in a chicken cage trial in which 100 broilers were infected with 5 × 104 sporulated Eimeria tenella oocysts; broilers receiving a decoquinate solution was set up as a chemical control. The optimal anticoccidial concentration was determined by calculating the anticoccidial index (ACI), and the suitable concentration was used as the recommended dose for a series of safety dose assessment tests, such as feed conversion ratio (FCR), hematological indices and serum biochemical indices, as well as liver and kidney sections, at onefold (low dose), threefold (medium dose) and sixfold (high dose) the recommended dose (RD). RESULTS: The results showed that this combination formulation of three plant natural products had a better anticoccidial effect than formulations containing two plant natural products or a single one, with an ACI of 169.3. The dose gradient anticoccidial test revealed that the high-dose formulation group had a better anticoccidial effect (ACI = 169.2) than the medium- and low-dose groups. The safety evaluation test showed that concentrations of the formulation at one-, three- and sixfold the RD were non-toxic to Arbor Acres broilers, indicating the high safety of the combination formulation. CONCLUSIONS: The combination formulation showed not only a moderate anticoccidial effect but also had a high safety profile for broilers. The results of this study indicate a new alternative for the prevention and control of coccidiosis in broilers.