Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168687, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37996024

RESUMO

Landform, soil properties, soil cadmium (Cd) pollution and rainfall are the important factors affecting the spatial variation of rice Cd. In this study, we conducted big data mining and model analysis of 150,000 rice-soil sampling sites to examine the effects by the above four factors on the spatial variation of rice Cd in Hunan Province, China. Specifically, the variable coefficient of rice Cd in space was significantly correlated with the partition scale according to the logistic fitting. The improved random forest results suggested that elevation (DEM) and pH were the two most important factors affecting the spatial variation of rice Cd, followed by relief, soil Cd content and rainfall. Typically, variance partitioning analysis (VPA) revealed that both the soil property and the interactive effects between the soil property and Cd pollution were the principal contributors to the rice-Cd variation, with the respective contributing rates of 30.5 % and 29.0 %. Meanwhile, the partial least square-structural equation modelling (PLS-SEM) elucidated 4 main paths of specific indirect effects on rice-Cd variation. They were landform → physicochemical property → soil acidity → rice-Cd variation, landform → soil acidity → rice-Cd variation, physicochemical property → soil acidity → rice-Cd variation, and soil texture → soil acidity → rice-Cd variation. This work can provide a general guidance for scientific zoning, accurate prediction and prevention of Cd pollution in paddy fields.

2.
Huan Jing Ke Xue ; 44(10): 5727-5736, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827788

RESUMO

Cadmium (Cd) contamination of paddy fields is a global concern, as it can cause the accumulation of Cd in food. To explore the effects of equal application of silicon fertilizers on the bioavailability of cadmium and soil Cd uptake at different growth stages of rice, a field experiment was conducted with five silicon fertilizers under the same silicon dose (225 kg·hm-2). The results revealed that the Cd contents in roots, stems, and leaves increased with the extension of the rice growth stage. The application of silicon fertilizers reduced the Cd contents in roots, stems, and leaves in brown rice by 14.9%, 28.2%, and 12.2%, respectively. Compared with that in the control, the Cd content of brown rice in the SiCaMgFe and SiW treatments was decreased by 21.1% (P<0.05) and 21.2% (P<0.05), respectively. Similarly, Cd content in iron plaque (DCB-Cd) increased with the extension of the rice growth period, which accounted for 15.8%-42.8% of the total Cd content in roots, and the DCB-Cd content was different in each stage of rice. The content of exchangeable Cd (Exc-Cd) in soil at the mature stage of rice decreased by 36.4%, and the other fractions increased by 12.5%-48.2%. The results showed significant negative correlations between the Cd contents and Si in roots, DCB-Cd and soil available Cd and available Si, Exc-Cd and Car-Cd, and soil available Cd and pH value. Cd content in roots was positively correlated with DCB-Cd. With the equal dose of silicon fertilizer, the treatments of SiCaMgFe and SiW could effectively reduce the Cd content in rice. The application of silicon fertilizer promoted the transfer of Exc-Cd to Carb-Cd by increasing the soil pH value and the soil available Si content, meanwhile reducing the soil available Cd, Exc-Cd contents, the adsorption of Cd by the iron film on the root surface, and the adsorption capacity of iron plaque and root, thereby reducing the absorption of Cd by rice.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Fertilizantes/análise , Solo/química , Silício , Disponibilidade Biológica , Poluentes do Solo/análise , Ferro
3.
Huan Jing Ke Xue ; 44(2): 991-1002, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775622

RESUMO

To clarify the primary factors affecting soil bioavailable cadmium (Cd) and arsenic (As) by silicon fertilizer, we chose different properties of silicon fertilizer, including three types of alkaline silicon fertilizer[Na2SiO3, CaSiO3, and ASSF (pH 9-11)] and one weak acid neutral soluble silicon fertilizer (NSSF, pH 5-6), to carry out a pot experiment by adding different amounts of Si fertilizer (25-800 mg·kg-1, calculated as Si). After 21 days of flooding, soil basic physical and chemical properties, along with diffusive gradients in thin film Cd and As (DGT-Cd and DGT-As) were investigated. The results showed that the application of Si fertilizer with different properties had different significant effects on the basic physical and chemical properties of soil. Specifically, the three types of alkaline silicon fertilizer significantly increased the soil pH (P<0.05), among which Na2SiO3 exhibited the strongest ability; however, the application of NSSF remarkably reduced soil pH (P<0.05), and per unit (mg) Si application of NSSF could reduce soil pH by 0.0017 units. Furthermore, with each fertilizer application rate that reached 400 mg·kg-1 (calculated as Si), the changes in soil pH and Eh tended to be gentle. The ability of the four types of silicon fertilizer to improve soil available silicon ranked as NSSF>Na2SiO3>ASSF>CaSiO3. Additionally, the application of the three types of alkaline silicon fertilizer apparently decreased soil DGT-Cd while increasing soil DGT-As (P<0.05). When the addition rate of CaSiO3 was up to 100 mg·kg-1(calculated as Si), soil DGT-Cd concentration could be significantly decreased by approximately 50.89% without causing a significant increase in soil DGT-As concentration. Conversely, when the NSSF application rate was up to 400 mg·kg-1 (calculated as Si), the soil DGT-As basically reached its steady-state, and the DGT-As reduction rate reached 85.87%. Strikingly, the correlation analysis of the influencing factors of soil DGT-Cd and DGT-As showed that soil pH was the main factor affecting soil bioavailable Cd and As (DGT-Cd and DGT-As), and the effect of soil available Si and P on soil Cd and As bioavailability was negligible. Consequently, soil DGT-Cd and soil DGT-As could reach a minimum when soil pH was adjusted to 6.5-7.0 or 5-5.5 by alkaline silicon fertilizer or NSSF, respectively. It is undoubtedly of great significance, to clarify the primary factors that influence soil bioavailable Cd and As to ensure food security production.

4.
Environ Pollut ; 304: 119225, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35351593

RESUMO

Soil properties, such as soil pH, soil organic matter (SOM), cation exchange capacity (CEC), are the most important factors affecting cadmium (Cd) accumulation in vegetables. In this study, we conducted big data mining of 31,342 soil and vegetable samples to examine the influence of soil properties (soil pH, SOM, CEC, Zn and Mn content) on the accumulation of Cd in root, solanaceous, and leafy vegetables in Hunan Province, China. Specifically, the Cd accumulation capability was in the following order: leafy vegetables > root vegetables > solanaceous vegetables. The soil property thresholds for safety production in vegetables were determined by establishing nonlinear models between Cd bioaccumulation factor (BCF) and the individual soil property, and were 6.5 (pH), 30.0 g/kg (SOM), 13.0 cmol/kg (CEC), 100-140 mg/kg (Zn), and 300-400 mg/kg (Mn). When soil property values were higher than the thresholds, Cd accumulation in vegetables tended to be stable. Prediction models showed that pH and soil Zn were the leading factors influencing Cd accumulation in root vegetables, explaining 87% of the variance; pH, SOM, soil Zn and Mn explained 68% of the variance in solanaceous vegetables; pH and SOM were the main contributors in leafy vegetables, explaining 65% of the variance. Further, variance partitioning analysis (VPA) revealed that the interaction effect of the corresponding key soil properties contributed mostly to BCF. Meanwhile, partial least squares (PLS) path modeling was employed to analyze the path and the interactive effects of soil properties on Cd BCF. pH and SOM were found to be the biggest two players affecting BCF in PLS-models, and the most substantial interactive influence paths of soil properties on BCF were different among the three types of vegetables.


Assuntos
Cádmio , Poluentes do Solo , Big Data , Cádmio/análise , China , Solo/química , Poluentes do Solo/análise , Verduras/química
5.
Environ Pollut ; 295: 118590, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843847

RESUMO

In situ remediation technology applied aims to not only decrease cadmium (Cd) and arsenic (As) uptake by rice but also improve soil health and rice quality in contaminated paddy soils. Here the effects of a combined amendment, consisting of limestone, iron powder, silicon fertilizer, and calcium-magnesium-phosphate fertilizer, with three application rates (0, 450, and 900 g m-2) on soil health, rice root system, and brown rice quality were compared in moderately versus highly Cd and As co-contaminated paddy fields. After the amendment application, soil pH, cation exchange capacity, four kinds of soil enzyme activities increased (sucrase, urease, acid phosphatase, and catalase), and concentrations of leached Cd/As decreased, as measured by the DTPA (diethylene triamine pentaacetic acid) and TCLP (toxicity characteristic leaching procedure). Changes in the above soil indicators promoted soil health. In both fields, the dithionite-citrate-bicarbonate (DCB)-Fe and DCB-Mn concentration in iron plaque increased and root length became longer. Changes in the above root system indicators reduced the root system's absorption of Cd and As but increased that of nutrients. Under 900 g m-2 treatment, the Cd concentration in brown rice of two sites decreased by 55.8% and 28.9%, likewise inorganic As (iAs) decreased by 50.0% and 21.1%, whereas essential amino acids increased by 20.4% and 20.0%, respectively. Furthermore, the Cd and iAs concentrations in brown rice were <0.2 mg kg-1 (maximum contaminant level of Cd and iAs in the Chinese National Food Safety Standards GB2762-2017 for brown rice) under the 900 g m-2 in the moderately contaminated field. These results suggest the combined amendment can improve soil health and brown rice quality in the moderately and highly Cd- and As-co-contaminated paddy soils, offering potential eco-friendly and efficient remediation material for applications in such polluted paddy soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/análise , Solo , Poluentes do Solo/análise
6.
Environ Sci Pollut Res Int ; 27(17): 21847-21858, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32281061

RESUMO

It is important to provide a more comprehensive understanding of cadmium (Cd) input and output in different contamination zones. In this study, we choose 15 sampling areas in three types of contamination zones (industrial and mining, suburb, and rural) to systematically study the inventory of soil Cd input and output in Changzhutan (CZT) urban agglomerations, Hunan Province, China. The results showed that the value of total Cd input in industrial and mining (34.58 g/ha/year) was respectively about 2 and 3 times of that in suburb and in rural. Meanwhile, the total output flux in industrial and mining also presented highest value (38.67 g/ha/year) among the zones. As for the contributions, atmospheric deposition was responsible for 85-89% of the total input fluxes, which was significantly higher than those of irrigation water and fertilizer. Crop harvesting, especially straw removal, was the dominant output pathway, contributing 66-78%. Moreover, Cd annual balance illustrated that the net input fluxes under straw removal scenario were negative in all zones, and it was opposite under straw returning scenario. Further, the changes of soil Cd concentrations under straw returning and straw removal scenario were compared by a dynamic mathematical model. The modeling results presented that the soil Cd content continued to increase under straw returning in 100 years, while it was declining under straw removal scenario. This prediction indicated straw removal was an important remediation for Cd-polluted paddy soil, especially in Hunan. Nevertheless, more treatment measures need to conduct to reach the safety limits in paddy soil.


Assuntos
Oryza , Poluentes do Solo/análise , Cádmio/análise , China , Solo
7.
Ying Yong Sheng Tai Xue Bao ; 26(3): 826-32, 2015 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-26211065

RESUMO

The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the competitive absorption between Cd and Zn by rice was the main control factor affecting the Cd absorption by rice than their competitive adsorption by soil.


Assuntos
Cádmio/análise , Fertilizantes , Poluentes do Solo/análise , Solo/química , Zinco/análise , Animais , Disponibilidade Biológica , Galinhas , China , Monitoramento Ambiental , Esterco , Oryza , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA