Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(27): e202304754, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37126395

RESUMO

Understanding the nature of single-atom catalytic sites and identifying their spectroscopic fingerprints are essential prerequisites for the rational design of target catalysts. Here, we apply correlated in situ X-ray absorption and infrared spectroscopy to probe the edge-site-specific chemistry of Co-N-C electrocatalyst during the oxygen reduction reaction (ORR) operation. The unique edge-hosted architecture affords single-atom Co site remarkable structural flexibility with adapted dynamic oxo adsorption and valence state shuttling between Co(2-δ)+ and Co2+ , in contrast to the rigid in-plane embedded Co1 -Nx counterpart. Theoretical calculations demonstrate that the synergistic interplay of in situ reconstructed Co1 -N2 -oxo with peripheral oxygen groups gives a rise to the near-optimal adsorption of *OOH intermediate and substantially increases the activation barrier for its dissociation, accounting for a robust acidic ORR activity and 2e- selectivity for H2 O2 production.

2.
ACS Appl Mater Interfaces ; 14(45): 50849-50857, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321608

RESUMO

Early transition metals offer promising orthogonal reactivity to catalytic processes promoted by late transition metals. Nevertheless, exploiting variable single-atomic configurations as reactive centers is hitherto not well documented owing to their oxophilic nature. Herein we report an in-situ grafting strategy that employs nitrogenated holey carbon nitrides as a scaffold and invokes the reasonably good match of temperature-dependent pyrolysis to stabilize an atomic titanium-nitrogen (Ti1N2OH) moiety onto the hierarchical porous carbon support (Ti1/NC-SAC). The Ti1/NC-SAC as the cathode in dye-sensitized solar cells assembly exhibited superior electrocatalytic activity toward the triiodine reduction reaction, comparable to the conventional Pt cathode. DFT studies theoretically identified that the intrinsic robust triiodine reduction activity is essentially governed by the unique edge-hosted Ti sites, from both aspects, near-optimal adsorption of I intermediate and electron-donating ability. This work sheds light on the rational design of Ti-based SACs and their applications in photovoltaic fields.

3.
ACS Appl Mater Interfaces ; 14(26): 29822-29831, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35733359

RESUMO

The feature endowing atomic Ni-N-C electrocatalysts with exceptional intrinsic alkaline hydrogen evolution activity is hitherto not well-documented and remains elusive. To this end, we rationally exploited the hierarchical porous carbon microstructures as scaffolds to construct unique Ni-N2+2-S active sites to boost the sluggish Volmer reaction kinetics. Density functional theory reveals an obvious d-band center (ϵd) upshift of the edge-hosted Ni-N2+2-S sites compared with pristine Ni-N4, which translates to a more stabilized OH adsorption. Moreover, the synergetic dual-site (Ni and S atom) interplay gives rise to a decoupled regulation of the adsorption strength of intermediate species (OHad, Had) and thereby energetic water dissociation kinetics. Bearing these in mind, sodium thiosulfate was deliberately adopted as an additive in the molten salt system for controllable synthesis, considering the simultaneous catalyst morphology and active-site modulation. The target Ni-N2+2-S catalyst delivers a low working overpotential (83 mV@10 mA cm-2) and Tafel slope (100.5 mV dec-1) comparable to those of representative transition metal-based electrodes in alkaline media. The present study provides insights into the metal active-site geometry and promising synergistic effects over single-atom catalysis.

4.
Chem Asian J ; 17(12): e202200138, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353445

RESUMO

Exploring low-energy reaction pathway of catalytic biomass conversion can lead to wider application and the achievement of sustainability objectives. Since glucose dehydrogenation to gluconic acid and H2 is a cost-effective alternative to glucose oxidation, this study aims to elucidate its mechanism. The detection of lactone as an intermediate indicates that cyclic glucose reacts directly via its hemiacetal group-ring opening is not involved; that is, cyclic glucose is dehydrogenated to lactone, which is further hydrolyzed to gluconic acid. The source of hydrogen is confirmed to be from glucose and water by Isotope tracing analysis. Density function theory calculations demonstrate that Hemiacetal Dehydrogenation Pathway (this work) is less energy intensive than Ring-opening Oxidation Pathway (previous works). This study provides a new dehydrogenation strategy to produce gluconic acid and H2 from biomass under mild conditions.


Assuntos
Glucose , Hidrogênio , Gluconatos , Glucose/metabolismo , Lactonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA