Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3890-3903, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475081

RESUMO

This study aimed to explore the intervention effect of Chuanxiong-Chishao herb pair(CX-CS) on a myocardial infarction-atherosclerosis(MI-AS) mouse model and investigate its effect on the expression profile of circular RNAs(circRNAs)/long non-coding RNAs(lncRNAs) in ischemic myocardium and aorta. Sixty male ApoE~(-/-) mice were randomly assigned to a model group, high-, medium-, and low-dose CX-CS groups(7.8, 3.9, and 1.95 g·kg~(-1)), and a positive drug group(metoprolol 26 mg·kg~(-1) and simvastatin 5.2 mg·kg~(-1)), with 12 mice in each group. Male C57BL/6J mice were assigned to the sham group. The mice in the model group and the groups with drug intervention were fed on a high-fat diet for 10 weeks, followed by anterior descending coronary artery ligation. After that, the mice were fed on a high-fat diet for another two weeks to induce the MI-AS model. The mice in the sham group received normal feed, followed by sham surgery without coronary artery ligation. Mice in the groups with drug intervention received CX-CS or positive drug by gavage for four weeks from the 9th week of high-fat feeding, and those in the model group and the sham group received an equal volume of normal saline. Whole transcriptome sequencing was performed on the heart and aorta tissues of the medium-dose CX-CS group, the model group, and the sham group after administration. The results showed that the medium-and high-dose CX-CS groups showed improved cardiac function and reduced myocardial fibrosis area, and the medium-dose CX-CS group showed significantly reduced plaque area. CX-CS treatment could reverse the expression of circRNA_07227 and circRNA_11464 in the aorta of AS model and circRNA expression(such as circRNA_11505) in the heart of the MI model. Differentially expressed circRNAs between the CX-CS-treated mice and the model mice were mainly enriched in lipid synthesis, lipid metabolism, lipid transport, inflammation, and angiogenesis in the aorta, and in angiogenesis, blood pressure regulation, and other processes in the heart. CX-CS treatment could reverse the expression of lncRNAs such as ENSMUST00000162209 in the aorta of the AS model and TCONS_00002123 in the heart of the MI model. Differentially expressed lncRNAs between the CX-CS-treated mice and model mice were mainly enriched in lipid metabolism, angiogenesis, autophagy, apoptosis, and iron death in the aorta, and in angiogenesis, autophagy, and iron death in the heart. In summary, CX-CS can regulate the expression of a variety of circRNAs and lncRNAs, and its intervention mechanism in coronary heart disease may be related to the regulation of angiogenesis and inflammation in ischemic myocardium, as well as lipid metabolism, lipid transport, inflammation, angiogenesis in AS aorta.


Assuntos
Aterosclerose , Infarto do Miocárdio , RNA Longo não Codificante , Animais , Masculino , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Lipídeos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , RNA Circular/genética , RNA Longo não Codificante/genética
2.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5292-5298, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36472036

RESUMO

This study aims to investigate the effects and the underlying mechanism of Huangqi Shengmai Decoction(HQSMD) in the treatment of fatigue and myocardial injury in a joint rat model. Wistar rats were assigned into 4 groups: sham, model, diltiazem hydrochloride(positive control), and HQSMD. The joint model of fatigue and myocardial injury was established by 14-day exhausted swimming followed by high ligation of the left anterior descending coronary artery. The rats in the sham group underwent a sham operation without coronary artery ligation or swimming. Since the fourth day after the ligation, swimming was continued in the model group and the drug-treated groups for the following 4 weeks. Meanwhile, the rats in the positive control group and the HQSMD group were respectively administrated intragastrically with diltiazem hydrochloride(20 mg·kg~(-1)·d~(-1)) and HQSMD(0.95 g·kg~(-1)·d~(-1)) for 4 weeks, while the shams and the models were given the same volume of normal saline. The left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), grip strength, and myocardial pathophysiological changes were measured to evaluate the anti-fatigue and cardioprotective effects of HQSMD. The protein levels of PTEN-induced putative kinase 1(PINK1) and parkin in the myocardium were measured by Western blot to preliminarily elucidate the mechanism of HQSMD in ameliorating myocardial injury by suppressing mitochondrial autophagy. Compared with the shams, the models showed weakened heart function(LVEF and LVFS, P<0.01), decreased grasping ability(P<0.05), elevated blood urea nitrogen(BUN) and aldosterone(ALD) levels(P<0.01), aggravated myocardial fibrosis and connective tissue hyperplasia(P<0.01), and up-regulated protein levels of PINK1(P<0.01) and parkin(P<0.05). Four-week treatment with HQSMD increased the LVEF and LVFS levels(P<0.01), enhanced the grip strength(P<0.01), reduced the serum levels of BUN(P<0.01) and ALD(P<0.05), alleviated the pathological injury and fibrosis in the myocardium(P<0.01), and down-regulated the protein levels of PINK1(P<0.01) and parkin(P<0.05) in heart tissue. The results demonstrate that HQSMD may alleviate myocardial fibrosis and protect myocardium by suppressing the excessive mitochondrial auto-phagic activity and reducing the excessively elevated ALD level, thereby ameliorating fatigue and myocardial injury.


Assuntos
Cardiomiopatias , Traumatismos Cardíacos , Ratos , Animais , Função Ventricular Esquerda , Ratos Sprague-Dawley , Volume Sistólico , Diltiazem/farmacologia , Ratos Wistar , Fibrose , Proteínas Quinases , Ubiquitina-Proteína Ligases
3.
Zhongguo Zhong Yao Za Zhi ; 47(3): 737-744, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178957

RESUMO

The present study investigated the mechanism of components in stasis-resolving and collateral-dredging Chinese herbal medicines, including scutellarin(Scu), paeonol(Pae), and hydroxy safflower yellow A(HSYA), in the treatment of psoriasis by regulating angiogenesis and inflammation. The human umbilical vein endothelial cells(HUVECs) cultured in vitro were divided into a normal group, a model group, a VEGFR tyrosine kinase inhibitor Ⅱ(VRI) group, and Scu, Pae, and HSYA groups with low, me-dium, and high doses. Cell viability was detected by the CCK-8 assay. Cell migration was detected by wound healing assay. Tube formation assay was used to measure the tube formation ability. Western blot was used to detect the protein expression of the VEGFR2/Akt/ERK1/2 signaling pathway. The secretion levels of inflammatory cytokines IFN-γ, IL-1ß, IL-6, and TNF-α were detected by ELISA. The results showed that compared with the model group, all the Scu, Pae, and HSYA groups could reduce cell viability, inhibit cell migration and tube formation(P<0.05, P<0.01), and down-regulated the protein expression of VEGFR2, p-VEGFR2, Akt, p-Akt, ERK1/2, and p-ERK1/2. Scu and Pae could down-regulate VEGFR2 expression(P<0.05, P<0.01), while other groups only showed a downward trend. Scu and Pae significantly reduced IFN-γ and IL-6 levels(P<0.01), and HSYA significantly reduced the levels of IFN-γ, IL-1ß, and IL-6(P<0.01). Scu, Pae, and HSYA had no significant effect on TNF-α. The results suggested that Scu, Pae, and HSYA may exert a therapeutic role in psoriasis-related angiogenesis and inflammation by inhibiting VEGFR2/Akt/ERK1/2 signaling pathway and inhibiting the secretion of IFN-γ, IL-1ß, and IL-6.


Assuntos
Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , China , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Chin J Integr Med ; 27(11): 858-866, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34532747

RESUMO

OBJECTIVE: To investigate the correlation of platelet and coagulation function with blood stasis syndrome (BSS) in coronary heart disease (CHD). METHODS: The protocol for this meta-analysis was registered on PROSPERO (CRD42019129452). PubMed, Excerpta Medica Database (Embase), the Cochrane Library, and China National Knowledge Infrastructure (CNKI) were searched from inception to 1st June, 2020. Trials were considered eligible if they enrolled BSS and non-BSS (NBSS) patients with CHD and provided information on platelet and coagulation function. The platelet function, coagulation function, and fibrinolytic activity were compared between the BSS and NBSS groups. Forest plots were generated to show the SMDs or ESs with corresponding 95% CIs for each study. Subgroup analysis and sensitivity analysis were performed to explore potential sources of heterogeneity. RESULTS: The systematic search identified 1,583 articles. Thirty trials involving 10,323 patients were included in the meta-analysis. The results showed that mean platelet volume, platelet distribution width, platelet aggregation rate, platelet P selectin, fibrinogen, plasminogen activator inhibitor-1 (PAI-1), thromboxane B2 (TXB2), 6-keto-prostaglandin F1alpha (6-keto-PGF1 α), and TXB2/6-keto-PGF1 α were higher in the BSS group than in the NBSS group (P<0.05 or P<0.01). Activated partial thromboplastin time was lower in the BSS group than in the NBSS group in the acute phase of CHD (P<0.01). The R and K values in thromboelastography and tissue plasminogen activator (t-PA) and t-PA/PAI-1 were lower in the BSS group than in the NBSS group (all P<0.01). No difference was found in the results of platelet count, plateletcrit, maximum amplitude, von Willebrand factor, prothrombin time, thrombin time, international normalized ratio, etc. between groups. CONCLUSIONS: Increased platelet function, hypercoagulability, and decreased fibrinolytic activity were found among CHD patients with BSS.


Assuntos
Doença das Coronárias , Ativador de Plasminogênio Tecidual , Coagulação Sanguínea , Plaquetas , Humanos , Agregação Plaquetária
5.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1521-1525, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32489029

RESUMO

The global outbreak of coronavirus disease 2019(COVID-19) has further spread, and there is an increasing number of confirmed cases in many countries. On February 28, 2020 of Geneva time, the World Health Organization has raised global risk level to the very high level in view of outbreak of COVID-19. Since some patients' condition appeared to deteriorate rapidly after infection of this 2019 novel coronavirus(2019-nCoV), a variety of treatments should be considered. Holistic view and syndrome differentiation are the two characteristics of traditional Chinese medicine(TCM). Therefore, under the guidance of the holistic view, syndrome diffe-rentiation of TCM has achieved good effects in the treatment of COVID-19. This treatment mainly aimed at eliminating pathogens and strengthening overall health, regulating the balance of body and coordinating various of functions of Zangfu organs. In addition, modern medical proposes host-directed therapy(HDT), a strategy aims to interfere with host cell mechanism, enhance immune responses, and reduce exacerbated inflammation. To some extent, the combined application of HDT and antiviral therapy is highly consistent with the therapeutic concept of the holistic view of TCM. Therefore, under the guidance of the holistic view, syndrome differentiation of TCM uses treatments, such as clearing heat, detoxification, relieving asthma, clearing damp and phlegm, together with Lianhua Qingwen Capsules, Maxing Shigan Decoction, and Haoqin Qingdan Decoction under the guidance of these therapeutic methods. These therapeutic methods and prescriptions intervened with both virus and host at the same time in the treatment of COVID-19, which has important implications for the effective clinical treatment of COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Medicina Tradicional Chinesa , Pneumonia Viral/tratamento farmacológico , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
6.
Artigo em Inglês | MEDLINE | ID: mdl-30906416

RESUMO

OBJECTIVE: To study the cardioprotective mechanism by which the combination of Chuanxiong (CX) and Chishao (CS) promotes angiogenesis. METHODS: Myocardial infarction (MI) mouse models were induced by ligation of the left anterior descending coronary artery. The effects on cardiac function were evaluated in the perindopril tert-butylamine group (PB group) (3 mg/kg/d), CX group (55 mg/kg/d), CS group (55 mg/kg/d), and CX and CS combination (CX-CS) group (27.5 mg/kg/d CX plus 27.5 mg/kg/d CS). RO4929097, an inhibitor of Notch γ secretase, was used (10 mg/kg/d) to explore the role of Notch signalling in the CX-CS-induced promotion of angiogenesis in the myocardial infarcted border zone (IBZ). The left ventricular ejection fraction (LVEF) and percentage of MI area were evaluated with animal ultrasound and Masson staining. The average optical densities (AODs) of CD31 and vWF in the myocardial IBZ were detected by immunofluorescence. Angiogenesis-related proteins including hypoxia-inducible factor 1-alpha (HIF-1α), fibroblast growth factor receptor 1 (FGFR-1), Notch1 and Notch intracellular domain (NICD), and stem cell mobilization-related proteins including stromal cell-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR-4), and cardiotrophin1 were detected by western blot analysis. RESULTS: Compared with the model group, the CX-CS and PB groups both showed markedly improved LVEF and decreased percentage of MI area after 21 days of treatment. Although the CX group and CS group showed increased LVEF and decreased MI areas compared with the model group, the difference was not significant. The AOD of CD31 in the IBZ in both the model and the CX-CS-I group was markedly reduced compared with that in the sham group. CX-CS significantly increased the CD31 AOD in the IBZ and decreased the AODs of CD31 and vWF in the infarct zone compared with those in the model group. The expression of HIF-1α in both the model group and the CX-CS group was higher than that in the sham group. Compared with the model group, the expression of FGFR-1, SDF-1, cardiotrophin1, Notch1, and NICD was increased in the CX-CS group. Notch1 and NICD expression in the CX-CS-I group was reduced compared with that in the CX-CS group. CONCLUSIONS: The combination of CX and CS protected cardiomyocytes in the IBZ better than CX or CS alone. The mechanism by which CX-CS protects ischemic myocardium may be related to the proangiogenesis effect of CX-CS exerted through Notch signalling and the mobilization of stem cells to the IBZ.

7.
Zhongguo Zhong Yao Za Zhi ; 43(22): 4486-4490, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-30593243

RESUMO

Ischemic cerebrovascular disease and cerebral ischemia/reperfusion injury threaten the health of human being. We studied the protective effect of Ginkgo biloba extract 50 (EGb50) on the mitochondrial function in SH-SY5Y cells after hypoxia/reoxygenation (H/R) injury and explored its mechanisms, so as to provide new ideas for studies on the treatment for ischemic cerebrovascular disease. We established the H/R injury model in SH-SY5Y cells after administrating EGb50. Subsequently, the mitochondrial membrane potential and the concentration of intracellular Ca²âº were measured by flow cytometer. The levels of optic atrophy1 (Opa1) and dynamin-like protein 1 (Drp1) were evaluated by immunofluorescence and western blot. The results showed that the mitochondrial membrane potential was decreased and the level of intracellular Ca²âº was increased after H/R injury. Moreover, the expression of mitochondrial fusion protein Opa1 was decreased, while the expression of mitochondrial fission protein Drp1 was increased. However, EGb50 significantly increased the mitochondrial membrane potential and suppressed the level of intracellular Ca²âº. In addition, EGb50 increased the expression of Opa1 and decreased the expression of Drp1. The results demonstrated that EGb50 has a neuroprotective effect on SH-SY5Y cells after H/R injury, and could improve the energy metabolism and mitochondrial function. The underlying mechanisms may be associated with the regulation of mitochondrial fusion and fission, which provided data support for the treatment of ischemic cerebrovascular disease with EGb50.


Assuntos
Mitocôndrias , Traumatismo por Reperfusão , Hipóxia Celular , Ginkgo biloba , Humanos , Potencial da Membrana Mitocondrial , Extratos Vegetais
8.
Artigo em Inglês | MEDLINE | ID: mdl-30186354

RESUMO

Effectively improving myocardial blood flow and controlling atherosclerotic plaque have always been key and difficult points in the prevention and treatment of coronary artery disease (CAD). Although "therapeutic angiogenesis" is regarded as a promising approach for ischemic heart disease by improving blood flow, angiogenesis itself can induce the destabilization of atherosclerotic plaque, which reflects the double-edged role of angiogenesis. Modulating the balance of angiogenesis can be an important target for CAD treatment. Traditional Chinese medicine (TCM) emphasizes the holistic view and dynamic balance of the body. Furthermore, the principle of activating blood circulation and removing blood stasis (ABCRS) is closely connected with angiogenesis and CAD. Recent research suggests that Chinese herbal medicines for ABCRS are effective in balancing the regulation of angiogenesis. This review presents the progress of recent research on the angiogenesis regulation with Chinese herbal medicines for ABCRS in CAD. Moreover, this review demonstrates that Chinese herbal medicines for ABCRS can not only promote angiogenesis in the ischemic area to improve myocardial blood flow but also alleviate angiogenesis to stabilize plaque in atherosclerosis, which reflects the holistic regulatory role in CAD treatment.

9.
Chin J Integr Med ; 24(7): 494-501, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27286711

RESUMO

OBJECTIVE: To investigate the pro-angiogenic effects of paeoniflorin (PF) in a vascular insufficiency model of zebrafish and in human umbilical vein endothelial cells (HUVECs). METHODS: In vivo, the pro-angiogenic effects of PF were tested in a vascular insufficiency model in the Tg(fli-1:EGFP)y1 transgenic zebrafish. The 24 h post fertilization (hpf) embryos were pretreated with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor II (VRI) for 3 h to establish the vascular insufficiency model and then post-treated with PF for 24 h. The formation of intersegmental vessels (ISVs) was observed with a fluorescence microscope. The mRNA expression of fms-like tyrosine kinase-1 (flt-1), kinase insert domain receptor (kdr), kinase insert domain receptor like (kdrl) and von Willebrand factor (vWF) were analyzed by real-time polymerase chain reaction (PCR). In vitro, the pro-angiogenic effects of PF were observed in HUVECs in which cell proliferation, migration and tube formation were assessed. RESULTS: PF (6.25-100 µmol/L) could rescue VRI-induced blood vessel loss in zebrafish and PF (25-100 µmol/L), thereby restoring the mRNA expressions of flt-1, kdr, kdrl and vWF, which were down-regulated by VRI treatment. In addition, PF (0.001-0.03 µmol/L) could promote the proliferation of HUVECs while PF stimulated HUVECs migration at 1.0-10 µmol/L and tube formation at 0.3 µmol/L. CONCLUSION: PF could promote angiogenesis in a vascular insufficiency model of zebrafish in vivo and in HUVECs in vitro.


Assuntos
Indutores da Angiogênese/uso terapêutico , Glucosídeos/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Monoterpenos/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/patologia , Indutores da Angiogênese/farmacologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Embrião não Mamífero , Glucosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Monoterpenos/farmacologia , Fitoterapia , Peixe-Zebra
10.
Chin J Integr Med ; 23(9): 654-662, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28551771

RESUMO

OBJECTIVE: To investigate the synergistic effects of Chuanxiong-Chishao herb-pair (CCHP) on promoting angiogenesis in silico and in vivo. METHODS: The mechanisms of action of an herb-pair, Chuanxiong-Chishao, were investigated using the network pharmacological and pharmacodynamic strategies involving computational drug target prediction and network analysis, and experimental validation. A set of network pharmacology methods were created to study the herbs in the context of targets and diseases networks, including prediction of target profiles and pharmacological actions of main active compounds in Chuanxiong and Chishao. Furthermore, the therapeutic effects and putative molecular mechanisms of Chuanxiong-Chishao actions were experimentally validated in a chemical-induced vascular insuffificiency model of transgenic zebrafifish in vivo. The mRNA expression of the predicted targets were further analyzed by real-time polymerase chain reaction (RT-PCR). RESULTS: The computational prediction results found that the compounds in Chuanxiong have antithrombotic, antihypertensive, antiarrhythmic, and antiatherosclerotic activities, which were closely related to protecting against hypoxic-ischemic encephalopathy, ischemic stroke, myocardial infarction and heart failure. In addition, compounds in Chishao were found to participate in anti-inflflammatory effect and analgesics. Particularly, estrogen receptor α (ESRα) and hypoxia-inducible factor 1-α (HIF-1α) were the most important potential protein targets in the predicted results. In vivo experimental validation showed that post-treatment of tetramethylpyrazine hydrochloride (TMP•HCl) and paeoniflorin (PF) promoted the regeneration of new blood vessels in zebrafifish involving up-regulating ESRα mRNA expression. Co-treatment of TMP•HCl and PF could enhance the vessel sprouting in chemical-induced vascular insuffificiency zebrafifish at the optimal compatibility proportion of PF 10 µmol/L with TMP•HCl 1 µmol/L. CONCLUSIONS: The network pharmacological strategies combining drug target prediction and network analysis identified some putative targets of CCHP. Moreover, the transgenic zebrafifish experiments demonstrated that the Chuanxiong-Chishao combination synergistically promoted angiogenic activity, probably involving ESRα signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Embrião não Mamífero/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/química , Ligantes , Monoterpenos/química , Neovascularização Fisiológica/genética , Pirazinas/química , Reprodutibilidade dos Testes , Peixe-Zebra/embriologia
11.
Zhongguo Zhong Yao Za Zhi ; 39(23): 4509-15, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25911792

RESUMO

Ginkgo is one of the most successful cases of botanical drugs developed by modern science and technology during the past fifty years all over the world. At present ginkgo has been applied to the prevention and treatment of cardiovascular disease widely, and has good clinical efficacy. Type 2 diabetes has been proved to be the risk equivalents of cardiovascular disease, therefore it has an important scientific significance for looking for more effective drugs of prevention and control of diabetes. To seek more efficient and safe drug from the plant medicine which has the function of regulate blood sugar and improve insulin resistance becomes a hotspot at home and abroad. Basic and clinical studies have shown the ginkgo preparations of Chinese medicine have certain regulation effect on blood sugar and insulin resistance. In this paper, we review the mechanisms and clinical applications of ginkgo preparations on diabetes and its applications during the past 10 years.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Ginkgo biloba/química , Hipoglicemiantes/administração & dosagem , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA