Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Heliyon ; 10(13): e33764, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39050421

RESUMO

Disulfidptosis, a new form of cell death, may be induced by disulfide stress associated with cystine disulfide buildup, which can promote cell toxicity, leading to cell death. Nevertheless, the role of direct prognosis and the mechanism underlying the regulation of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) are still unknown. This study aimed to investigate the role of DRGs in LUAD prognosis and diagnosis through multiomics analysis. First, copy number variations (CNVs) and mutations in the 10 genes were assessed. Considering that five differentially expressed genes (DEGs) were associated with disulfidptosis, a novel DRG score that can be utilized to anticipate LUAD prognosis was developed. Next, the generated receiver operating characteristic (ROC) and survival curves demonstrated that the model had an excellent predictive quality in LUAD in both the training and validation cohorts. Meanwhile, substantial functional disparities between the high DRG group and the low DRG group were observed, and the second gap mitosis (G2M) checkpoint, E2 promoter-binding factor (E2F) targets, and myelocytomatosis (MYC) target activities were consistently higher in the high DRG group than in the low DRG group. Additionally, the T-cell dysfunction score and tumor inflammation signature (Merck18) were negatively correlated with DRGs, whereas myeloid-derived suppressor cells (MDSCs) were positively correlated with DRGs. Moreover, DRGs were negatively linked to most of the immunological checkpoints. Meanwhile, samples of low DRGs benefited more from immune checkpoint blockade (ICB). The correlation analysis between DRGs and clinical characteristics revealed increasing malignancy with increasing DRG scores. Drug sensitization experiment results indicated that sensitivity to cisplatin, vincristine, docetaxel, and gemcitabine was higher in the high DRG group than in the low DRG group. The function of model genes in LUAD was also verified using immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, 5-ethynyl-2'-deoxyuridine (EDU), and clonogenic formation.

2.
Heliyon ; 10(11): e32258, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882384

RESUMO

Disulfidptosis, a newly discovered mode of cell death caused by excessive accumulation of intracellular disulfide compounds, is closely associated with tumor development. This study focused on the relationship between disulfidptosis and clear cell renal cell carcinoma (ccRCC). Firstly, the characterizations of disulfidptosis-related genes (DRGs) in ccRCC were showed, which included number variation (CNV), single nucleotide variation (SNV), DNA methylation, mRNA expression and gene mutation. Then, the ccRCC samples were classified into three clusters through unsupervised clustering based on DRGs. Survival and pathway enrichment differences were evaluated among the three clusters. Subsequently, the differentially expressed genes (DEGs) among the three clusters were screened by univariate Cox, LASSO, and multivariate Cox analysis, and five key DEGs were obtained. Based on the five key DEGs, the ccRCC samples were reclassified into two geneclusters and the survival differences and immune cell infiltration between two geneclusters was investigated. In next step, ccRCC samples were divided into two groups according to PCA scores of five key DEGs, namely high PCA score group (HPSG) and low PCA score group (LPSG). On this basis, differences in survival prognosis, immune cell infiltration and correlation with immune checkpoint, as well as differences in sensitivity to targeted drugs were compared between HPSG and LPSG. The expression levels of four immune checkpoints were higher in HPSG than in LPSG, whereas the LPSG was more sensitive to targeted drug therapy than the HPSG. Finally, validation experiments on HDAC4 indicated that HDAC4 could increase the proliferation and colony formation ability of ccRCC cells.

3.
Cancer Gene Ther ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877164

RESUMO

Metastasis is the greatest clinical challenge for UTUCs, which may have distinct molecular and cellular characteristics from earlier cancers. Herein, we provide single-cell transcriptome profiles of UTUC para cancer normal tissue, primary tumor lesions, and lymphatic metastases to explore possible mechanisms associated with UTUC occurrence and metastasis. From 28,315 cells obtained from normal and tumor tissues of 3 high-grade UTUC patients, we revealed the origin of UTUC tumor cells and the homology between metastatic and primary tumor cells. Unlike the immunomicroenvironment suppression of other tumors, we found no immunosuppression in the tumor microenvironment of UTUC. Moreover, it is imperative to note that stromal cells are pivotal in the advancement of UTUC. This comprehensive single-cell exploration enhances our comprehension of the molecular and cellular dynamics of metastatic UTUCs and discloses promising diagnostic and therapeutic targets in cancer-microenvironment interactions.

4.
Sci Rep ; 14(1): 13390, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862642

RESUMO

The tumor microenvironment (TME) comprises immune-infiltrating cells that are closely linked to tumor development. By screening and analyzing genes associated with tumor-infiltrating M0 cells, we developed a risk model to provide therapeutic and prognostic guidance in clear cell renal cell carcinoma (ccRCC). First, the infiltration abundance of each immune cell type and its correlation with patient prognosis were analyzed. After assessing the potential link between the depth of immune cell infiltration and prognosis, we screened the infiltrating M0 cells to establish a risk model centered on three key genes (TMEN174, LRRC19, and SAA1). The correlation analysis indicated a positive correlation between the risk score and various stages of the tumor immune cycle, including B-cell recruitment. Furthermore, the risk score was positively correlated with CD8 expression and several popular immune checkpoints (ICs) (TIGIT, CTLA4, CD274, LAG3, and PDCD1). Additionally, the high-risk group (HRG) had higher scores for tumor immune dysfunction and exclusion (TIDE) and exclusion than the low-risk group (LRG). Importantly, the risk score was negatively correlated with the immunotherapy-related pathway enrichment scores, and the LRG showed a greater therapeutic benefit than the HRG. Differences in sensitivity to targeted drugs between the HRG and LRG were analyzed. For commonly used targeted drugs in RCC, including axitinib, pazopanib, temsirolimus, and sunitinib, LRG had lower IC50 values, indicating increased sensitivity. Finally, immunohistochemistry results of 66 paraffin-embedded specimens indicated that SAA1 was strongly expressed in the tumor samples and was associated with tumor metastasis, stage, and grade. SAA1 was found to have a significant pro-tumorigenic effect by experimental validation. In summary, these data confirmed that tumor-infiltrating M0 cells play a key role in the prognosis and treatment of patients with ccRCC. This discovery offers new insights and directions for the prognostic prediction and treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Prognóstico , Microambiente Tumoral/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Feminino , Masculino , Medição de Risco/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Imunoterapia/métodos , Sulfonamidas/uso terapêutico
6.
Apoptosis ; 29(7-8): 1051-1069, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553613

RESUMO

Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.


Assuntos
Fator 3 Ativador da Transcrição , Carcinoma de Células Renais , Neoplasias Renais , Proteínas de Ligação a RNA , Humanos , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Camundongos , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Masculino , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Camundongos Nus , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Pessoa de Meia-Idade
7.
Int J Oncol ; 64(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038145

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, concerning the Transwell assay experiments shown in Fig. 3G and I on p. 8, the data panel showing the result of the 'LNCaP / sh­CASCS11­1' experiment in Fig. 3G appeared to be overlapping with the 'LNCaP / Vector' experiment in Fig. 3I, even though the data were intended to have shown the results from differently performed experiments. After having re­examined their original data, the authors have realized that Fig. 3G and I were inadvertently assembled incorrectly. The revised version of Fig. 3, showing the correct data for the 'LNCaP / Vector' experiment in Fig. 3I, is shown on on the next page. The authors are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a Corrigendum, and all the authors agree with its publication. Furthermore, the authors thank the interested reader for drawing this matter to their attention, and apologize to the readership for any inconvenience caused. [International Journal of Oncology 61: 110, 2022; DOI: 10.3892/ijo.2022.5400].

8.
Cancer Sci ; 115(2): 412-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115797

RESUMO

Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Masculino , Animais , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo , Receptor Notch3/genética
9.
J Cancer Res Clin Oncol ; 149(15): 13925-13942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541976

RESUMO

PURPOSE: Disulfidptosis is a novel type of cell death induced by disulphide stress that depends on the accumulation of cystine disulphide, causing cytotoxicity and triggering cell death. However, the direct prognostic effect and regulatory mechanism of disulfidptosis-related genes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS: To explore the role of 10 disulfidptosis-related genes, the multiomic data of 10 genes were comprehensively analysed. Next, based on seven disulfidptosis-related differentially expressed genes, a novel disulfidptosis-related gene score was developed to help predict the prognosis of BLCA. Immunohistochemistry, EDU, Real-time PCR and western blot were used to verify the model. RESULTS: Significant functional differences were found between the high- and low-risk score groups, and samples with a higher risk score were more malignant. Furthermore, the tumour exclusion and Tumour Immune Dysfunction and Exclusion scores of the high-risk score group were higher than those of the low-risk score group. The risk score was positively correlated with the expression of immune checkpoints. Drug sensitivity analyses revealed that the low-risk score group had a higher sensitivity to cisplatin, doxorubicin, docetaxel and gemcitabine than the high-risk score group. Moreover, the expression of the TM4SF1 was positively correlated with the malignancy degree of BLCA, and the proliferation ability of BLCA cells was reduced after knockdown TM4SF1. CONCLUSION: The present study results suggest that disulfidptosis-related genes influence the prognosis of BLCA through their involvement in immune cell infiltration. Thus, these findings indicate the role of disulfidptosis in BLCA and its potential regulatory mechanisms.

10.
Exp Hematol Oncol ; 12(1): 49, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221625

RESUMO

BACKGROUND: Metastasis is a crucial aspect of disease progression leading to death in patients with prostate cancer (PCa). However, its mechanism remains unclear. We aimed to explore the mechanism of lymph node metastasis (LNM) by analyzing the heterogeneity of tumor microenvironment (TME) in PCa using scRNA-seq. METHODS: A total of 32,766 cells were obtained from four PCa tissue samples for scRNA-seq, annotated, and grouped. InferCNV, GSVA, DEG functional enrichment analysis, trajectory analysis, intercellular network evaluation, and transcription factor analysis were carried out for each cell subgroup. Furthermore, validation experiments targeting luminal cell subgroups and CXCR4 + fibroblast subgroup were performed. RESULTS: The results showed that only EEF2 + and FOLH1 + luminal subgroups were present in LNM, and they appeared at the initial stage of luminal cell differentiation, which were comfirmed by verification experiments. The MYC pathway was enriched in the EEF2 + and FOLH1 + luminal subgroups, and MYC was associated with PCa LNM. Moreover, MYC did not only promote the progression of PCa, but also led to immunosuppression in TME by regulating PDL1 and CD47. The proportion of CD8 + T cells in TME and among NK cells and monocytes was lower in LNM than in the primary lesion, while the opposite was true for Th and Treg cells. Furthermore, these immune cells in TME underwent transcriptional reprogramming, including CD8 + T subgroups of CCR7 + and IL7R+, as well as M2-like monocyte subgroups expressing tumor-associated signature genes, like CCR7, SGKI, and RPL31. Furthermore, STEAP4+, ADGRF5 + and CXCR4+, and SRGNC + fibroblast subgroups were closely related to tumor progression, tumor metabolism, and immunosuppression, indicating their contributions in PCa metastasis. Meanwhile, The presence of CXCR4 + Fibroblasts in PCa was confirmed by polychromatic immunofluorescence. CONCLUSIONS: The significant heterogeneity of luminal, immune, and interstitial cells in PCa LNM may not only directly contribute to tumor progression, but also indirectly result in TME immunosuppression, which may be the cause of metastasis in PCa and in which MYC played an role.

11.
Clin Exp Immunol ; 212(3): 224-238, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988140

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease, which mainly damages patients' exocrine glands. Sensitive early diagnostic indicators and effective treatments for pSS are lacking. Using machine learning methods to find diagnostic markers and effective therapeutic ways for pSS is of great significance. In our study, first, 1643 differentially expressed genes (DEGs; 737 were upregulated and 906 were downregulated) were ultimately screened out and analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes based on the datasets from the Gene Expression Omnibus. Then, support vector machine, least absolute shrinkage and selection operator regression, random forest, and weighted correlation network analysis were used to screen out feature genes from DEGs. Subsequently, the intersection of the feature genes was taken to screen 10 genes as hub genes. Meanwhile, the analysis of the diagnostic efficiency of 10 hub genes showed their good diagnostic value for pSS, which was validated through immunohistochemistry on the paraffin sections of the labial gland. Subsequently, a multi-factor regulatory network and correlation analysis of hub genes were performed, and the results showed that ELAVL1 and IGF1R were positively correlated with each other but both negatively correlated with the other seven hub genes. Moreover, several meaningful results were detected through the immune infiltration landscape. Finally, we used molecular docking to screen potential therapeutic compounds of pSS based on the hub genes. We found that the small molecules DB08006, DB08036, and DB15308 had good docking scores with ELAVL1 and IGF1R simultaneously. Our study might provide effective diagnostic biomarkers and new therapeutic ideas for pSS.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/genética , Simulação de Acoplamento Molecular , Lábio , Aprendizado de Máquina , Parafina
12.
Front Immunol ; 13: 974034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203594

RESUMO

Cuproptosis, Copper Induced Cell Death, is a newly defined type of programmed cell death, involving in the regulation of tricarboxylic acid (TCA) cycle. Dysfunction of cuproptosis induces cytotoxicity and influences the proliferation of multiple tumors. However, the direct prognostic effect of cuproptosis related genes and corresponding regulating mechanisms amid prostate cancer remains unknown. A multi-omics analysis strategy was adopted to explore the role of ten cuproptosis related genes in The Cancer Genome Atlas- Prostate Adenocarcinoma (TCGA-PRAD). Firstly, mRNA expression, Copy Number Variance (CNV), mutation, DNA methylation and prognostic power of the ten genes were illustrated. Based on transcriptomic data, we developed a novel prognostic model named the Cuproptosis-related gene score (CRGScore), Their biological functions were then detected by enrichment analysis and unsupervised cluster analysis. Following that, their correlation with Tumor Immune Microenvironment (TIME), immunotherapy, Biochemical Recurrence (BCR) and chemotherapeutic resistance were elaborated by relevant bioinformatics algorithms. Ten cuproptosis related genes exhibited extensive alteration of CNV and DNA methylation and showed significant influence on the prognosis of prostate cancer patients. These genes mainly enriched in E2F and G2M targets and mitosis pathways, Samples with high CRGScore showed enhancement resulting in the increased infiltration of T cell, B cell, NK cells. They also demonstrated close correlations with the BCR status, expression of eight immune checkpoints and chemotherapeutic resistances in prostate cancer. Our comprehensive analysis of CRGScore revealed an extensive regulatory mechanism by which they affect the tumor-immune-stromal microenvironment, clinicopathological features, and prognosis. We also determined the therapeutic liability of CRGScore in targeted therapy and immunotherapy. These findings highlight the crucial clinical implications of CRGScore and provide new ideas for guiding personalized immunotherapy strategies for patients with Pca.


Assuntos
Apoptose , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Cobre , Prognóstico , RNA Mensageiro , Ácidos Tricarboxílicos , Microambiente Tumoral/genética
13.
Front Oncol ; 12: 948113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185200

RESUMO

Objective: To establish a ubiquitin-related long noncoding ribonucleic acids (lncRNAs) prognosis prediction model for prostate cancer (Pca). Methods: Data were acquired through The Cancer Genome Atlas (TCGA) database. Ubiquitin-related differentially expressed genes (DEGs) and lncRNAs in Pca were filtered out. UBE2S was selected as the representative gene and validated in vitro. Progression-free survival (PFS) predictive signature was established with ubiquitin-related lncRNAs screened by Cox regression analyses and internally validated. A nomogram was constructed to assess the prognosis of Pca patients. Gene enrichment analysis was performed to explore functional differences based on risk stratification. Between different risk groups, immune status and drug sensitivity were contrasted. Results: A total of 254 ubiquitin-related genes were screened. UBE2S was shown to promote the proliferation of Pca cells in vitro. The predictive signature was established based on six ubiquitin-related lncRNAs and validated. The prognosis of Pca patients was worse with an increasing risk score. The area under the curve (AUC) of the signature was higher than that of clinicopathological variables (0.806 vs 0.504-0.701). The AUC was 0.811 for 1-year PFS, 0.807 for 3-year PFS, and 0.790 for 5-year PFS. The calibration curves of risk score-based nomogram demonstrated high consistency. By contrasting the expression of immune function, cells, and checkpoints, we found that the signature was closely related to immunity. The high-risk patients were more sensitive to gemcitabine, cisplatin, bortezomib, etc. and resistant to bicalutamide. Conclusion: The ubiquitin-related lncRNAs can effectively predict the prognosis of Pca and may provide new treatment options for Pca.

14.
Ann Clin Lab Sci ; 52(5): 763-771, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36261193

RESUMO

OBJECTIVE: Hypoxia facilitates an aggressive phenotype and immune evasion in solid tumors including bladder cancer (BC). Sphingosine kinase 1 (SphK1) is aberrantly expressed and correlated with poor prognosis in BC patients. However, its roles in hypoxia-evoked malignancies and immune evasion in BC remain elusive. METHODS: The expression of SphK1 in BC tissues was analysed using a bioinformatics database. BC cells were transfected with si-SphK1 or recombinant HIF-1α plasmids under hypoxic conditions. The mRNA level, activity and protein expression of SphK1 were determined. Transwell assay was performed to evaluate cell invasion. After co-culture with natural killer (NK) cells, NK cell cytotoxicity to BC cells was assessed. The involvement of sphingosine-1-phosphate (S1P)/HIF-1α signaling was analysed by ELISA, qRT-PCR and western blot. RESULTS: UALCAN and GEPIA database confirmed high expression of SphK1 in BC tissues. Moreover, hypoxia increased the expression and activity of SphK1. Loss of SphK1 inhibited hypoxia-induced cell invasion. IL-2 induced NK cell activation by secreting TNF-α and IFN-γ. Hypoxia antagonized NK cell activation-evoked cytotoxicity to BC cells. Intriguingly, SphK1 knockdown reversed hypoxia-induced cell resistance to NK cell killing. Mechanically, SphK1 loss inhibited hypoxia-activated the S1P/HIF-1α signaling. However, S1P addition reversed the inhibitory effects of SphK1 down-regulation on hypoxia-activated S1P/HIF-1α signaling. Notably, reactivating HIF-1α overturned the suppressive roles of SphK1 loss in decreasing hypoxia-induced cell invasion and resistance to NK cell cytotoxicity. CONCLUSIONS: Targeting SphK1 may inhibit hypoxia-evoked invasion and immune evasion via the S1P/HIF-1α signaling, indicating a promising therapeutic target for BC.


Assuntos
Carcinoma , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Fator de Necrose Tumoral alfa/genética , Interleucina-2 , Bexiga Urinária , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Matadoras Naturais/metabolismo , Hipóxia/genética , Oncogenes , RNA Mensageiro , Morte Celular
15.
Front Genet ; 13: 905518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092880

RESUMO

Despite advances in its treatment, patients diagnosed with clear cell renal cell carcinoma (ccRCC) have a poor prognosis. The mechanism of cuproptosis has been found to differ from other mechanisms that regulate cell death, including apoptosis, iron poisoning, pyrophosphate poisoning, and necrosis. Cuproptosis is an essential component in the regulation of a wide variety of biological processes, such as cell wall remodeling and oxidative stress responses. However, cuproptosis-related genes' expression in ccRCC patients and their association with the patient's prognosis remain ambiguous. Evaluation of The Cancer Genome Atlas (TCGA) identified 11 genes associated with cuproptosis that were differently expressed in ccRCC and nearby nontumor tissue. To construct a multigene prognostic model, the prognostic value of 11 genes was assessed and quantified. A signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and this signature was used to separate ccRCC patients into different risk clusters, with low-risk patients having a much better prognosis. This five-gene signature, when combined with patients' clinical characteristics, might serve as one independent predictor of overall survival (OS) in ccRCC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that cuproptosis-related genes were enriched in patients with ccRCC. Then, quantitative real-time PCR (qPCR) was employed to verify these genes' expression. Generally, research has indicated that cuproptosis-related genes are important in tumor immunity and can predict OS of ccRCC patients.

16.
J Oncol ; 2022: 8227806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106334

RESUMO

Background: Reprogramming of lipid metabolism is closely associated with tumor development, serving as a common and critical metabolic feature that emerges during tumor evolution. Meanwhile, immune cells in the tumor microenvironment also undergo aberrant lipid metabolism, and altered lipid metabolism also has an impact on the function and status of immune cells, further promoting malignant biological behavior. Consequently, we focused on lipid metabolism-related genes for constructing a novel prognostic marker and evaluating immune status in prostate cancer. Methods: Information about prostate cancer patients was obtained from TCGA and GEO databases. The NMF algorithm was conducted to identify the molecular subtypes. The least absolute shrinkage and selection operator (Lasso) regression analysis was applied to establish a prognostic risk signature. CIBERSORT algorithm was used to calculate immune cell infiltration levels in prostate cancer. External clinical validation data were used to validate the results. Results: Prostate cancer samples were divided into two subtypes according to the NMF algorithm. A six-gene risk signature (PTGS2, SGPP2, ALB, PLA2G2A, SRD5A2, and SLC2A4) was independent of prognosis and showed good stability. There were significant differences between risk groups of patients with respect to the infiltration of immune cells and clinical variables. Response to immunotherapy also differed between different risk groups. Furthermore, the mRNA expression levels of the signature genes were verified in tissue samples by qRT-PCR. Conclusion: We constructed a six-gene signature with lipid metabolism in prostate cancer to effectively predict prognosis and reflect immune microenvironment status.

17.
Front Genet ; 13: 928778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846128

RESUMO

Background: Notch signaling is a key regulator of immune cell differentiation and linked to autoimmune diseases, tumorigenesis and tumor-induced immunomodulation. An abnormally activated Notch signaling pathway contributes to almost all of the key features of cancer, including tumor angiogenesis, stemness, and epithelial-mesenchymal transition. Consequently, we investigated Notch pathway-related genes for developing prognostic marker and assessing immune status in bladder cancer. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to analyze RNA-seq data for bladder cancer. Cluster subtypes were identified using the NMF algorithm. In order to establish a prognostic risk signature, the least absolute shrinkage and selection operator (Lasso) and Cox regression analysis was utilized. GSEA was carried out to investigate the molecular mechanisms. Immune cell infiltration levels in bladder cancer were calculated using the CIBERSORT algorithm. External clinical tissue samples were used to validate the expression levels of signature genes. Results: Based on the NMF algorithm, bladder cancer samples were divided into two cluster subtypes and displayed different survival outcome and immune microenvironment. A six-gene risk signature (DTX3L, CNTN1, ENO1, GATA3, MAGEA1, and SORBS2) was independent for prognosis and showed good stability. The infiltration of immune cells and clinical variables were significantly different among the risk groups of patients. Response to immunotherapy also differed between different risk groups. Furthermore, the mRNA expression levels of the signature genes were verified in tissue samples by qRT-PCR. Conclusion: We established a 6-gene signature associated with Notch pathway in bladder cancer to effectively predict prognosis and reflect immune microenvironment status.

18.
Int J Oncol ; 61(3)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904175

RESUMO

Prostate cancer (PCa) is one of the principal causes of cancer­related death worldwide. The roles and mechanisms of long non­coding RNA (lncRNA) involved in the development of PCa remain incompletely understood. The present study aimed to investigate the role and mechanism of lncRNA in PCa tumorigenesis. In the present study, lncRNA cancer susceptibility candidate 11 (CASC11) was revealed to be a crucial regulator of PCa progression. The expression profiles of CASC11 in PCa were identified through analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets, and validated in human PCa specimens and cell lines. Gain­ and loss­of­function assays were utilized to explore the biological role of CASC11 in PCa initiation and progression. RNA­sequencing, RNA pull­down and RNA immunoprecipitation analyses were used to explore potential mechanisms with which CASC11 may be associated. Rescue experiments were further conducted to confirm this association. The present results revealed that CASC11 was dominantly distributed in the nuclei of PCa cells, and was highly expressed in PCa tissues and cells. Overexpression of CASC11 was markedly associated with increased tumor proliferation and migratory ability. Functionally, decreased proliferation and migration, as well as inhibited xenograft tumor growth, were observed in CASC11­silenced PCa cells, whereas the opposite effects were detected in CASC11­overexpressing cells. Mechanistically, CASC11 promoted progression of the cell cycle and competitively interacted with Y­box binding protein 1 (YBX1) to block the p53 pathway. Given this, poly (ß­amino ester) (PBAE)/small interfering RNA­CASC11 (si­CASC11) nanoparticles were applied to inhibit CASC11 expression and enhance the antitumor effect in vivo. The results revealed that PBAE/si­CASC11 nanoparticles augmented the antitumor efficacy of CASC11 knockdown in vivo. In conclusion, the present study suggested that CASC11 may regulate PCa progression and elucidated a novel CASC11/YBX1/p53 signaling axis, providing a potential lncRNA­directed therapeutic strategy particularly for the treatment of patients with PCa.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
19.
Front Genet ; 13: 877278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706452

RESUMO

There is growing evidence that phagocytosis regulatory factors (PRFs) play important roles in tumor progression, and therefore, identifying and characterizing these factors is crucial for understanding the mechanisms of cellular phagocytosis in tumorigenesis. Our research aimed to comprehensively characterize PRFs in prostate adenocarcinoma (PRAD) and to screen and determine important PRFs in PRAD which may help to inform tumor prognostic and therapeutic signatures based on these key PRFs. Here, we first systematically described the expression of PRFs in PRAD and evaluated their expression patterns and their prognostic value. We then analyzed prognostic phagocytic factors by Cox and Lasso analysis and constructed a phagocytic factor-mediated risk score. We then divided the samples into two groups with significant differences in overall survival (OS) based on the risk score. Then, we performed correlation analysis between the risk score and clinical features, immune infiltration levels, immune characteristics, immune checkpoint expression, IC50 of several classical sensitive drugs, and immunotherapy efficacy. Finally, the Human Protein Atlas (HPA) database was used to determine the protein expression of 18 PRF characteristic genes. The aforementioned results confirmed that multilayer alterations of PRFs were associated with the prognosis of patients with PRAD and the degree of macrophage infiltration. These findings may provide us with potential new therapies for PRAD.

20.
Bioengineered ; 13(5): 13986-13999, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35758021

RESUMO

Recent studies have shown that NXPH family member 4 (NXPH4) plays an important role in the progression of cancer. However, the potential role of NXPH4 in bladder cancer (BCa) remains to be explored. The purpose of the present study was to identify whether NXPH4 could be used as a biomarker to predict the prognosis of BCa. We first examined the expression of NXPH4 in pan-cancer, and then focused on BCa. Univariate and multivariate Cox regression analysis were used to investigate whether NXPH4 could be used as an independent prognostic indicator. Gene set enrichment analysis (GSEA) was used for functional analysis of NXPH4-related genes. CIBERSORT algorithm was used to calculate immune cell infiltration levels with different NXPH4 expression. Finally, the expression of NXPH4 was validated in clinical tissue specimens and bladder cancer cell lines by immunohistochemistry and qRT-PCR. The tumor-promoting effects of NXPH4 were further investigated using counting kit-8 (CCK-8), colony formation, EdU assays, and tumor xenograft model. Our results showed that NXPH4 was highly expressed in BCa tissues. Patients in the high NXPH4 expression group had shorter overall survival (OS) and progression-free survival (PFS). We found that immune-related pathways were enriched in NXPH4-related genes. Immune cell infiltrations in BCa were also associated with different NXPH4 expression. NXPH4 was further found to be highly expressed in our validation specimens. The proliferative effect of NXPH4 was confirmed in BCa in vivo and in vitro. Overall, NXPH4 is a biomarker for predicting BCa prognosis and associated with immune infiltration.Abbreviations: NXPH4: Neurexophilin 4; BCa: Bladder cancer; TCGA-BLCA: The Cancer Genome Atlas Urothelial Bladder Carcinoma; shRNA: short hairpin RNA; NC: Negative control; OS: Overall survival; PFS: Progression-free survival; TME: Tumor microenvironment; IPS: immunophenoscore; ICIs: Immune checkpoint inhibitors; DEGs: Differential expression genes.


Assuntos
Glicoproteínas , Neuropeptídeos , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Neuropeptídeos/genética , Neuropeptídeos/imunologia , Prognóstico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA