Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Bioengineering (Basel) ; 11(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534501

RESUMO

Deep learning (DL) algorithms used for DOTATATE PET lesion detection typically require large, well-annotated training datasets. These are difficult to obtain due to low incidence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and the high cost of manual annotation. Furthermore, networks trained and tested with data acquired from site specific PET/CT instrumentation, acquisition and processing protocols have reduced performance when tested with offsite data. This lack of generalizability requires even larger, more diverse training datasets. The objective of this study is to investigate the feasibility of improving DL algorithm performance by better matching the background noise in training datasets to higher noise, out-of-domain testing datasets. 68Ga-DOTATATE PET/CT datasets were obtained from two scanners: Scanner1, a state-of-the-art digital PET/CT (GE DMI PET/CT; n = 83 subjects), and Scanner2, an older-generation analog PET/CT (GE STE; n = 123 subjects). Set1, the data set from Scanner1, was reconstructed with standard clinical parameters (5 min; Q.Clear) and list-mode reconstructions (VPFXS 2, 3, 4, and 5-min). Set2, data from Scanner2 representing out-of-domain clinical scans, used standard iterative reconstruction (5 min; OSEM). A deep neural network was trained with each dataset: Network1 for Scanner1 and Network2 for Scanner2. DL performance (Network1) was tested with out-of-domain test data (Set2). To evaluate the effect of training sample size, we tested DL model performance using a fraction (25%, 50% and 75%) of Set1 for training. Scanner1, list-mode 2-min reconstructed data demonstrated the most similar noise level compared that of Set2, resulting in the best performance (F1 = 0.713). This was not significantly different compared to the highest performance, upper-bound limit using in-domain training for Network2 (F1 = 0.755; p-value = 0.103). Regarding sample size, the F1 score significantly increased from 25% training data (F1 = 0.478) to 100% training data (F1 = 0.713; p < 0.001). List-mode data from modern PET scanners can be reconstructed to better match the noise properties of older scanners. Using existing data and their associated annotations dramatically reduces the cost and effort in generating these datasets and significantly improves the performance of existing DL algorithms. List-mode reconstructions can provide an efficient, low-cost method to improve DL algorithm generalizability.

2.
IEEE Trans Biomed Eng ; 71(1): 247-257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37471190

RESUMO

OBJECTIVE: Lesion detection with positron emission tomography (PET) imaging is critical for tumor staging, treatment planning, and advancing novel therapies to improve patient outcomes, especially for neuroendocrine tumors (NETs). Current lesion detection methods often require manual cropping of regions/volumes of interest (ROIs/VOIs) a priori, or rely on multi-stage, cascaded models, or use multi-modality imaging to detect lesions in PET images. This leads to significant inefficiency, high variability and/or potential accumulative errors in lesion quantification. To tackle this issue, we propose a novel single-stage lesion detection method using only PET images. METHODS: We design and incorporate a new, plug-and-play codebook learning module into a U-Net-like neural network and promote lesion location-specific feature learning at multiple scales. We explicitly regularize the codebook learning with direct supervision at the network's multi-level hidden layers and enforce the network to learn multi-scale discriminative features with respect to predicting lesion positions. The network automatically combines the predictions from the codebook learning module and other layers via a learnable fusion layer. RESULTS: We evaluate the proposed method on a real-world clinical 68Ga-DOTATATE PET image dataset, and our method produces significantly better lesion detection performance than recent state-of-the-art approaches. CONCLUSION: We present a novel deep learning method for single-stage lesion detection in PET imaging data, with no ROI/VOI cropping in advance, no multi-stage modeling and no multi-modality data. SIGNIFICANCE: This study provides a new perspective for effective and efficient lesion identification in PET, potentially accelerating novel therapeutic regimen development for NETs and ultimately improving patient outcomes including survival.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Humanos , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons/métodos , Tumores Neuroendócrinos/patologia
3.
IEEE Trans Biomed Eng ; 71(2): 679-688, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37708016

RESUMO

OBJECTIVE: Deep neural networks have been recently applied to lesion identification in fluorodeoxyglucose (FDG) positron emission tomography (PET) images, but they typically rely on a large amount of well-annotated data for model training. This is extremely difficult to achieve for neuroendocrine tumors (NETs), because of low incidence of NETs and expensive lesion annotation in PET images. The objective of this study is to design a novel, adaptable deep learning method, which uses no real lesion annotations but instead low-cost, list mode-simulated data, for hepatic lesion detection in real-world clinical NET PET images. METHODS: We first propose a region-guided generative adversarial network (RG-GAN) for lesion-preserved image-to-image translation. Then, we design a specific data augmentation module for our list-mode simulated data and incorporate this module into the RG-GAN to improve model training. Finally, we combine the RG-GAN, the data augmentation module and a lesion detection neural network into a unified framework for joint-task learning to adaptatively identify lesions in real-world PET data. RESULTS: The proposed method outperforms recent state-of-the-art lesion detection methods in real clinical 68Ga-DOTATATE PET images, and produces very competitive performance with the target model that is trained with real lesion annotations. CONCLUSION: With RG-GAN modeling and specific data augmentation, we can obtain good lesion detection performance without using any real data annotations. SIGNIFICANCE: This study introduces an adaptable deep learning method for hepatic lesion identification in NETs, which can significantly reduce human effort for data annotation and improve model generalizability for lesion detection with PET imaging.


Assuntos
Curadoria de Dados , Tumores Neuroendócrinos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
4.
Med Image Anal ; 90: 102969, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802010

RESUMO

Deep neural networks have achieved excellent cell or nucleus quantification performance in microscopy images, but they often suffer from performance degradation when applied to cross-modality imaging data. Unsupervised domain adaptation (UDA) based on generative adversarial networks (GANs) has recently improved the performance of cross-modality medical image quantification. However, current GAN-based UDA methods typically require abundant target data for model training, which is often very expensive or even impossible to obtain for real applications. In this paper, we study a more realistic yet challenging UDA situation, where (unlabeled) target training data is limited and previous work seldom delves into cell identification. We first enhance a dual GAN with task-specific modeling, which provides additional supervision signals to assist with generator learning. We explore both single-directional and bidirectional task-augmented GANs for domain adaptation. Then, we further improve the GAN by introducing a differentiable, stochastic data augmentation module to explicitly reduce discriminator overfitting. We examine source-, target-, and dual-domain data augmentation for GAN enhancement, as well as joint task and data augmentation in a unified GAN-based UDA framework. We evaluate the framework for cell detection on multiple public and in-house microscopy image datasets, which are acquired with different imaging modalities, staining protocols and/or tissue preparations. The experiments demonstrate that our method significantly boosts performance when compared with the reference baseline, and it is superior to or on par with fully supervised models that are trained with real target annotations. In addition, our method outperforms recent state-of-the-art UDA approaches by a large margin on different datasets.


Assuntos
Técnicas Histológicas , Aprendizagem , Humanos , Microscopia , Redes Neurais de Computação , Coloração e Rotulagem , Processamento de Imagem Assistida por Computador
6.
PLoS Comput Biol ; 19(9): e1011432, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733781

RESUMO

Multiplex imaging is a powerful tool to analyze the structural and functional states of cells in their morphological and pathological contexts. However, hypothesis testing with multiplex imaging data is a challenging task due to the extent and complexity of the information obtained. Various computational pipelines have been developed and validated to extract knowledge from specific imaging platforms. A common problem with customized pipelines is their reduced applicability across different imaging platforms: Every multiplex imaging technique exhibits platform-specific characteristics in terms of signal-to-noise ratio and acquisition artifacts that need to be accounted for to yield reliable and reproducible results. We propose a pixel classifier-based image preprocessing step that aims to minimize platform-dependency for all multiplex image analysis pipelines. Signal detection and noise reduction as well as artifact removal can be posed as a pixel classification problem in which all pixels in multiplex images can be assigned to two general classes of either I) signal of interest or II) artifacts and noise. The resulting feature representation maps contain pixel-scale representations of the input data, but exhibit significantly increased signal-to-noise ratios with normalized pixel values as output data. We demonstrate the validity of our proposed image preprocessing approach by comparing the results of two well-accepted and widely-used image analysis pipelines.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Razão Sinal-Ruído , Algoritmos
7.
IEEE Trans Med Imaging ; 42(10): 3117-3126, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37216247

RESUMO

Image segmentation, labeling, and landmark detection are essential tasks for pediatric craniofacial evaluation. Although deep neural networks have been recently adopted to segment cranial bones and locate cranial landmarks from computed tomography (CT) or magnetic resonance (MR) images, they may be hard to train and provide suboptimal results in some applications. First, they seldom leverage global contextual information that can improve object detection performance. Second, most methods rely on multi-stage algorithm designs that are inefficient and prone to error accumulation. Third, existing methods often target simple segmentation tasks and have shown low reliability in more challenging scenarios such as multiple cranial bone labeling in highly variable pediatric datasets. In this paper, we present a novel end-to-end neural network architecture based on DenseNet that incorporates context regularization to jointly label cranial bone plates and detect cranial base landmarks from CT images. Specifically, we designed a context-encoding module that encodes global context information as landmark displacement vector maps and uses it to guide feature learning for both bone labeling and landmark identification. We evaluated our model on a highly diverse pediatric CT image dataset of 274 normative subjects and 239 patients with craniosynostosis (age 0.63 ± 0.54 years, range 0-2 years). Our experiments demonstrate improved performance compared to state-of-the-art approaches.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Criança , Recém-Nascido , Lactente , Pré-Escolar , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Algoritmos
8.
PLoS One ; 18(4): e0284563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37083575

RESUMO

Network approaches have successfully been used to help reveal complex mechanisms of diseases including Chronic Obstructive Pulmonary Disease (COPD). However despite recent advances, we remain limited in our ability to incorporate protein-protein interaction (PPI) network information with omics data for disease prediction. New deep learning methods including convolution Graph Neural Network (ConvGNN) has shown great potential for disease classification using transcriptomics data and known PPI networks from existing databases. In this study, we first reconstructed the COPD-associated PPI network through the AhGlasso (Augmented High-Dimensional Graphical Lasso Method) algorithm based on one independent transcriptomics dataset including COPD cases and controls. Then we extended the existing ConvGNN methods to successfully integrate COPD-associated PPI, proteomics, and transcriptomics data and developed a prediction model for COPD classification. This approach improves accuracy over several conventional classification methods and neural networks that do not incorporate network information. We also demonstrated that the updated COPD-associated network developed using AhGlasso further improves prediction accuracy. Although deep neural networks often achieve superior statistical power in classification compared to other methods, it can be very difficult to explain how the model, especially graph neural network(s), makes decisions on the given features and identifies the features that contribute the most to prediction generally and individually. To better explain how the spectral-based Graph Neural Network model(s) works, we applied one unified explainable machine learning method, SHapley Additive exPlanations (SHAP), and identified CXCL11, IL-2, CD48, KIR3DL2, TLR2, BMP10 and several other relevant COPD genes in subnetworks of the ConvGNN model for COPD prediction. Finally, Gene Ontology (GO) enrichment analysis identified glycosaminoglycan, heparin signaling, and carbohydrate derivative signaling pathways significantly enriched in the top important gene/proteins for COPD classifications.


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Humanos , Multiômica , Redes Neurais de Computação , Algoritmos , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas Morfogenéticas Ósseas
9.
Am J Nucl Med Mol Imaging ; 13(1): 33-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923602

RESUMO

BACKGROUND: Deep learning (DL) algorithms have shown promise in identifying and quantifying lesions in PET/CT. However, the accuracy and generalizability of these algorithms relies on large, diverse datasets which are time and labor intensive to curate. Modern PET/CT scanners may acquire data in list mode, allowing for multiple reconstructions of the same datasets with different parameters and imaging times. These reconstructions may provide a wide range of image characteristics to increase the size and diversity of datasets. Training algorithms with shorter imaging times and higher noise properties requires that lesions remain detectable. The purpose of this study is to model and predict the contrast-to-noise ratio (CNR) for shorter imaging times based on CNR from longer duration, lower noise images for 68Ga DOTATATE PET hepatic lesions and identify a threshold above which lesions remain detectable. METHODS: 68Ga DOTATATE subjects (n=20) with hepatic lesions were divided into two subgroups. The "Model" group (n=4 subjects; n=9 lesions; n=36 datapoints) was used to identify the relationship between CNR and imaging time. The "Test" group (n=16 subjects; n=44 lesions; n=176 datapoints) was used to evaluate the prediction provided by the model. RESULTS: CNR plotted as a function of imaging time for a subset of identified subjects was very well fit with a quadratic model. For the remaining subjects, the measured CNR showed a very high linear correlation with the predicted CNR for these lesions (R2 > 0.97) for all imaging durations. From the model, a threshold CNR=6.9 at 5-minutes predicted CNR > 5 at 2-minutes. Visual inspection of lesions in 2-minute images with CNR above the threshold in 5-minute images were assessed and rated as a 4 or 5 (probably positive or definitely positive) confirming 100% lesion detectability on the shorter 2-minute PET images. CONCLUSIONS: CNR for shorter DOTATATE PET imaging times may be accurately predicted using list mode reconstructions of longer acquisitions. A threshold CNR may be applied to longer duration images to ensure lesion detectability of shorter duration reconstructions. This method can aid in the selection of lesions to include in novel data augmentation techniques for deep learning.

10.
Med Image Comput Comput Assist Interv ; 13437: 639-649, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36383499

RESUMO

Due to domain shifts, deep cell/nucleus detection models trained on one microscopy image dataset might not be applicable to other datasets acquired with different imaging modalities. Unsupervised domain adaptation (UDA) based on generative adversarial networks (GANs) has recently been exploited to close domain gaps and has achieved excellent nucleus detection performance. However, current GAN-based UDA model training often requires a large amount of unannotated target data, which may be prohibitively expensive to obtain in real practice. Additionally, these methods have significant performance degradation when using limited target training data. In this paper, we study a more realistic yet challenging UDA scenario, where (unannotated) target training data is very scarce, a low-resource case rarely explored for nucleus detection in previous work. Specifically, we augment a dual GAN network by leveraging a task-specific model to supplement the target-domain discriminator and facilitate generator learning with limited data. The task model is constrained by cross-domain prediction consistency to encourage semantic content preservation for image-to-image translation. Next, we incorporate a stochastic, differentiable data augmentation module into the task-augmented GAN network to further improve model training by alleviating discriminator overfitting. This data augmentation module is a plug-and-play component, requiring no modification of network architectures or loss functions. We evaluate the proposed low-resource UDA method for nucleus detection on multiple public cross-modality microscopy image datasets. With a single training image in the target domain, our method significantly outperforms recent state-of-the-art UDA approaches and delivers very competitive or superior performance over fully supervised models trained with real labeled target data.

12.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626003

RESUMO

Identifying the progression of chronic lymphocytic leukemia (CLL) to accelerated CLL (aCLL) or transformation to diffuse large B-cell lymphoma (Richter transformation; RT) has significant clinical implications as it prompts a major change in patient management. However, the differentiation between these disease phases may be challenging in routine practice. Unsupervised learning has gained increased attention because of its substantial potential in data intrinsic pattern discovery. Here, we demonstrate that cellular feature engineering, identifying cellular phenotypes via unsupervised clustering, provides the most robust analytic performance in analyzing digitized pathology slides (accuracy = 0.925, AUC = 0.978) when compared to alternative approaches, such as mixed features, supervised features, unsupervised/mixed/supervised feature fusion and selection, as well as patch-based convolutional neural network (CNN) feature extraction. We further validate the reproducibility and robustness of unsupervised feature extraction via stability and repeated splitting analysis, supporting its utility as a diagnostic aid in identifying CLL patients with histologic evidence of disease progression. The outcome of this study serves as proof of principle using an unsupervised machine learning scheme to enhance the diagnostic accuracy of the heterogeneous histology patterns that pathologists might not easily see.

13.
J Med Imaging (Bellingham) ; 9(2): 026001, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35274026

RESUMO

Purpose: An open question in deep clustering is how to explain what in the image is driving the cluster assignments. This is especially important for applications in medical imaging when the derived cluster assignments may inform decision-making or create new disease subtypes. We develop cluster activation mapping (CLAM), which is methodology to create localization maps highlighting the image regions important for cluster assignment. Approach: Our approach uses a linear combination of the activation channels from the last layer of the encoder within a pretrained autoencoder. The activation channels are weighted by a channelwise confidence measure, which is a modification of score-CAM. Results: Our approach performs well under medical imaging-based simulation experiments, when the image clusters differ based on size, location, and intensity of abnormalities. Under simulation, the cluster assignments were predicted with 100% accuracy when the number of clusters was set at the true value. In addition, applied to computed tomography scans from a sarcoidosis population, CLAM identified two subtypes of sarcoidosis based purely on CT scan presentation, which were significantly associated with pulmonary function tests and visual assessment scores, such as ground-glass, fibrosis, and honeycombing. Conclusions: CLAM is a transparent methodology for identifying explainable groupings of medical imaging data. As deep learning networks are often criticized and not trusted due to their lack of interpretability, our contribution of CLAM to deep clustering architectures is critical to our understanding of cluster assignments, which can ultimately lead to new subtypes of diseases.

14.
JACC Adv ; 1(5): 100153, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38939457

RESUMO

The current era of big data offers a wealth of new opportunities for clinicians to leverage artificial intelligence to optimize care for pediatric and adult patients with a congenital heart disease. At present, there is a significant underutilization of artificial intelligence in the clinical setting for the diagnosis, prognosis, and management of congenital heart disease patients. This document is a call to action and will describe the current state of artificial intelligence in congenital heart disease, review challenges, discuss opportunities, and focus on the top priorities of artificial intelligence-based deployment in congenital heart disease.

15.
EJNMMI Res ; 11(1): 98, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601660

RESUMO

BACKGROUND: Gastroenteropancreatic neuroendocrine tumors most commonly metastasize to the liver; however, high normal background 68Ga-DOTATATE activity and high image noise make metastatic lesions difficult to detect. The purpose of this study is to develop a rapid, automated and highly specific method to identify 68Ga-DOTATATE PET/CT hepatic lesions using a 2D U-Net convolutional neural network. METHODS: A retrospective study of 68Ga-DOTATATE PET/CT patient studies (n = 125; 57 with 68Ga-DOTATATE hepatic lesions and 68 without) was evaluated. The dataset was randomly divided into 75 studies for the training set (36 abnormal, 39 normal), 25 for the validation set (11 abnormal, 14 normal) and 25 for the testing set (11 abnormal, 14 normal). Hepatic lesions were physician annotated using a modified PERCIST threshold, and boundary definition by gradient edge detection. The 2D U-Net was trained independently five times for 100,000 iterations using a linear combination of binary cross-entropy and dice losses with a stochastic gradient descent algorithm. Performance metrics included: positive predictive value (PPV), sensitivity, F1 score and area under the precision-recall curve (PR-AUC). Five different pixel area thresholds were used to filter noisy predictions. RESULTS: A total of 233 lesions were annotated with each abnormal study containing a mean of 4 ± 2.75 lesions. A pixel filter of 20 produced the highest mean PPV 0.94 ± 0.01. A pixel filter of 5 produced the highest mean sensitivity 0.74 ± 0.02. The highest mean F1 score 0.79 ± 0.01 was produced with a 20 pixel filter. The highest mean PR-AUC 0.73 ± 0.03 was produced with a 15 pixel filter. CONCLUSION: Deep neural networks can automatically detect hepatic lesions in 68Ga-DOTATATE PET. Ongoing improvements in data annotation methods, increasing sample sizes and training methods are anticipated to further improve detection performance.

16.
Front Genet ; 12: 760299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154240

RESUMO

Biological networks are often inferred through Gaussian graphical models (GGMs) using gene or protein expression data only. GGMs identify conditional dependence by estimating a precision matrix between genes or proteins. However, conventional GGM approaches often ignore prior knowledge about protein-protein interactions (PPI). Recently, several groups have extended GGM to weighted graphical Lasso (wGlasso) and network-based gene set analysis (Netgsa) and have demonstrated the advantages of incorporating PPI information. However, these methods are either computationally intractable for large-scale data, or disregard weights in the PPI networks. To address these shortcomings, we extended the Netgsa approach and developed an augmented high-dimensional graphical Lasso (AhGlasso) method to incorporate edge weights in known PPI with omics data for global network learning. This new method outperforms weighted graphical Lasso-based algorithms with respect to computational time in simulated large-scale data settings while achieving better or comparable prediction accuracy of node connections. The total runtime of AhGlasso is approximately five times faster than weighted Glasso methods when the graph size ranges from 1,000 to 3,000 with a fixed sample size (n = 300). The runtime difference between AhGlasso and weighted Glasso increases when the graph size increases. Using proteomic data from a study on chronic obstructive pulmonary disease, we demonstrate that AhGlasso improves protein network inference compared to the Netgsa approach by incorporating PPI information.

17.
IEEE Trans Image Process ; 30: 1130-1142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33270563

RESUMO

Maintaining the pairwise relationship among originally high-dimensional data into a low-dimensional binary space is a popular strategy to learn binary codes. One simple and intuitive method is to utilize two identical code matrices produced by hash functions to approximate a pairwise real label matrix. However, the resulting quartic problem in term of hash functions is difficult to directly solve due to the non-convex and non-smooth nature of the objective. In this paper, unlike previous optimization methods using various relaxation strategies, we aim to directly solve the original quartic problem using a novel alternative optimization mechanism to linearize the quartic problem by introducing a linear regression model. Additionally, we find that gradually learning each batch of binary codes in a sequential mode, i.e. batch by batch, is greatly beneficial to the convergence of binary code learning. Based on this significant discovery and the proposed strategy, we introduce a scalable symmetric discrete hashing algorithm that gradually and smoothly updates each batch of binary codes. To further improve the smoothness, we also propose a greedy symmetric discrete hashing algorithm to update each bit of batch binary codes. Moreover, we extend the proposed optimization mechanism to solve the non-convex optimization problems for binary code learning in many other pairwise based hashing algorithms. Extensive experiments on benchmark single-label and multi-label databases demonstrate the superior performance of the proposed mechanism over recent state-of-the-art methods on two kinds of retrieval tasks: similarity and ranking order. The source codes are available on https://github.com/xsshi2015/Scalable-Pairwise-based-Discrete-Hashing.

18.
IEEE Trans Image Process ; 30: 1662-1675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382655

RESUMO

Although deep neural networks have achieved great success on numerous large-scale tasks, poor interpretability is still a notorious obstacle for practical applications. In this paper, we propose a novel and general attention mechanism, loss-based attention, upon which we modify deep neural networks to mine significant image patches for explaining which parts determine the image decision-making. This is inspired by the fact that some patches contain significant objects or their parts for image-level decision. Unlike previous attention mechanisms that adopt different layers and parameters to learn weights and image prediction, the proposed loss-based attention mechanism mines significant patches by utilizing the same parameters to learn patch weights and logits (class vectors), and image prediction simultaneously, so as to connect the attention mechanism with the loss function for boosting the patch precision and recall. Additionally, different from previous popular networks that utilize max-pooling or stride operations in convolutional layers without considering the spatial relationship of features, the modified deep architectures first remove them to preserve the spatial relationship of image patches and greatly reduce their dependencies, and then add two convolutional or capsule layers to extract their features. With the learned patch weights, the image-level decision of the modified deep architectures is the weighted sum on patches. Extensive experiments on large-scale benchmark databases demonstrate that the proposed architectures can obtain better or competitive performance to state-of-the-art baseline networks with better interpretability. The source codes are available on: https://github.com/xsshi2015/Loss-based-Attention-for-Interpreting-Image-level-Prediction-of-Convolutional-Neural-Networks.

19.
IEEE Trans Med Imaging ; 40(10): 2880-2896, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33284750

RESUMO

Cell or nucleus detection is a fundamental task in microscopy image analysis and has recently achieved state-of-the-art performance by using deep neural networks. However, training supervised deep models such as convolutional neural networks (CNNs) usually requires sufficient annotated image data, which is prohibitively expensive or unavailable in some applications. Additionally, when applying a CNN to new datasets, it is common to annotate individual cells/nuclei in those target datasets for model re-learning, leading to inefficient and low-throughput image analysis. To tackle these problems, we present a bidirectional, adversarial domain adaptation method for nucleus detection on cross-modality microscopy image data. Specifically, the method learns a deep regression model for individual nucleus detection with both source-to-target and target-to-source image translation. In addition, we explicitly extend this unsupervised domain adaptation method to a semi-supervised learning situation and further boost the nucleus detection performance. We evaluate the proposed method on three cross-modality microscopy image datasets, which cover a wide variety of microscopy imaging protocols or modalities, and obtain a significant improvement in nucleus detection compared to reference baseline approaches. In addition, our semi-supervised method is very competitive with recent fully supervised learning models trained with all real target training labels.


Assuntos
Microscopia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
20.
JCO Clin Cancer Inform ; 4: 666-679, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730116

RESUMO

PURPOSE: We focus on the problem of scarcity of annotated training data for nucleus recognition in Ki-67 immunohistochemistry (IHC)-stained pancreatic neuroendocrine tumor (NET) images. We hypothesize that deep learning-based domain adaptation is helpful for nucleus recognition when image annotations are unavailable in target data sets. METHODS: We considered 2 different institutional pancreatic NET data sets: one (ie, source) containing 38 cases with 114 annotated images and the other (ie, target) containing 72 cases with 20 annotated images. The gold standards were manually annotated by 1 pathologist. We developed a novel deep learning-based domain adaptation framework to count different types of nuclei (ie, immunopositive tumor, immunonegative tumor, nontumor nuclei). We compared the proposed method with several recent fully supervised deep learning models, such as fully convolutional network-8s (FCN-8s), U-Net, fully convolutional regression network (FCRN) A, FCRNB, and fully residual convolutional network (FRCN). We also evaluated the proposed method by learning with a mixture of converted source images and real target annotations. RESULTS: Our method achieved an F1 score of 81.3% and 62.3% for nucleus detection and classification in the target data set, respectively. Our method outperformed FCN-8s (53.6% and 43.6% for nucleus detection and classification, respectively), U-Net (61.1% and 47.6%), FCRNA (63.4% and 55.8%), and FCRNB (68.2% and 60.6%) in terms of F1 score and was competitive with FRCN (81.7% and 70.7%). In addition, learning with a mixture of converted source images and only a small set of real target labels could further boost the performance. CONCLUSION: This study demonstrates that deep learning-based domain adaptation is helpful for nucleus recognition in Ki-67 IHC stained images when target data annotations are not available. It would improve the applicability of deep learning models designed for downstream supervised learning tasks on different data sets.


Assuntos
Antígeno Ki-67 , Humanos , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA