Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Refract Surg ; 39(6): 405-412, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37306197

RESUMO

PURPOSE: To evaluate the precision of corneal aberrations measured by a new SD-OCT/Placido topographer, the MS-39 (CSO), and to compare them with those provided by a Scheimpflug/Placido device, the Sirius (CSO), in normal eyes. METHODS: This study enrolled 90 normal eyes of 90 patients. Total root mean square (RMS), higher order RMS, coma, trefoil, spherical aberration, and astigmatism II were analyzed. The within-subject standard deviation (Sw), test-retest repeatability, and intraclass correlation coefficient (ICC) were calculated to assess the precision. Bland-Altman plots and 95% limits of agreement (LoAs) were calculated to assess the agreement. RESULTS: For intraobserver repeatability of anterior and total corneal aberrations, most of the ICCs were greater than 0.869, except for trefoil and astigmatism II. Regarding the posterior corneal surface, the ICCs of total RMS, coma, and spherical aberration were higher than 0.878, whereas the ICCs of higher order RMS, trefoil, and astigmatism II were lower than 0.626. All test-retest repeatability values were 0.17 µm or less. In terms of interobserver reproducibility, the Sw values were 0.04 µm or less, Test-retest repeatability values were less than 0.11 µm, and all ICCs ranged from 0.532 to 0.996. Regarding agreement, 95% LoAs were small for all Zernike coefficients, and the mean difference was close to zero. CONCLUSIONS: The new SD-OCT/Placido device exhibited excellent repeatability and reproducibility for anterior and total surface, whereas total RMS, coma, and spherical aberrations showed high precision on the posterior surface. High agreement was confirmed between the SD-OCT/Placido and Scheimpflug/Placido devices. [J Refract Surg. 2023;39(6):405-412.].


Assuntos
Astigmatismo , Humanos , Coma , Reprodutibilidade dos Testes , Tomografia de Coerência Óptica , Córnea
2.
J Colloid Interface Sci ; 648: 798-808, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327623

RESUMO

Chemical spills, especially oil spills, are becoming an increasingly serious environmental issue. It remains a challenge to develop green techniques to prepare mechanically robust oil-water separation materials, especially those capable of separating high-viscosity crude oils. Herein, we propose an environmentally friendly emulsion spray-coating method to fabricate durable foam composites with asymmetric wettability for oil-water separation. After the emulsion, composed of acidified carbon nanotubes (ACNTs), polydimethylsiloxane (PDMS) and its curing agent, is sprayed onto melamine foam (MF), water in the emulsion is first evaporated, while PDMS and ACNTs are finally deposited on the foam skeleton. The foam composite exhibits gradient wettability and turns from superhydrophobicity of the top surface (the water contact angle reaches as high as 155.2°) to hydrophilicity of the interior region. The foam composite can be used for the separation of oils with different densities and has a 97% separation efficiency for chloroform. In particular, the photothermal conversion-induced temperature rise can reduce the oil viscosity and complete the high-efficiency cleanup of crude oil. This emulsion spray-coating technique and asymmetric wettability show promise for the green and low-cost fabrication of high-performance oil/water separation materials.

3.
Br J Ophthalmol ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142332

RESUMO

AIMS: To assess the repeatability and reproducibility of the ocular measurements obtained with the Suoer SW-9000 µm Plus, a new fully automatic biometer based on optical low coherence reflectometry (OLCR) biometer, and to compare them to those obtained by a swept-source optical coherence tomography (SS-OCT)-based biometer. METHODS: This prospective study consisted of 115 eyes of 115 healthy subjects. The measurements were taken by the two optical biometers in random order. The measured parameters were axial length (AL), central corneal thickness (CCT), aqueous depth (AQD), anterior chamber depth (ACD), mean keratometry (Km), lens thickness (LT) and corneal diameter (CD). To evaluate the intraobserver repeatability and interobserver reproducibility, the within-subject SD, test-retest variability, coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were adopted. The Bland-Altman plot was drawn to assess the agreement. RESULTS: The repeatability and reproducibility of all parameters for the new device were excellent (ICC>0.960 and CoV<0.71%). The Bland-Altman plots showed high agreement between the OLCR-based and SS-OCT-based devices for AL, CCT, AQD, ACD, Km and LT, with narrow 95% limit of agreements (LoAs) (-0.08 mm to 0.06 mm, -15.91 µm to -1.01 µm, -0.09 mm to 0.09 mm, -0.09 mm to 0.08 mm, -0.47 D to 0.35 D, -0.05 mm to 0.16 mm, respectively) and moderate agreement for CD (95% LoA: -0.67 mm to -0.01 mm). CONCLUSIONS: The new Suoer SW-9000 µm Plus biometer showed excellent repeatability and reproducibility. All the parameters obtained by this biometer were similar to those measured by SS-OCT-based biometer.

4.
J Colloid Interface Sci ; 640: 41-51, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827847

RESUMO

Multimodal synergistic therapy based on nanomedicine drug delivery systems can achieve accurate cancer treatment. The anisotropy of gold nanorods (AuNRs) allows the adjustment of the longitudinal localized surface plasmon resonance absorption to the near-infrared band, which shows potential application in the field of photothermal therapy of cancer. Here, we report a new type of thermal-sensitive gold nanorod drug-loaded vesicles (UGRV-DOX) via the self-assembly of AuNRs modified with the amphiphilic polymer (PEG45-b-PS150) and upper critical solution temperature (UCST) polymer (P(AAm-co-AN)). The hollow structure of the vesicle can increase the drug loading capacity, and the polymers on its surface are intertwined to reduce drug leakage. As-prepared UGRV-DOX vesicles exhibits excellent photothermal conversion efficiency and can achieve light-controlled drug release. In vivo anti-tumor experiments showed that UGRV-DOX could ablate HepG2 transplanted tumors significantly under 808 nm laser irradiation, and the inhibition rate was as high as 99.3 %. These tumor-specific nanovesicles prefigure great potentials for high-precision cancer treatment.


Assuntos
Hipertermia Induzida , Nanotubos , Terapia Fototérmica , Fototerapia , Doxorrubicina/farmacologia , Ouro/farmacologia , Ouro/química , Temperatura , Linhagem Celular Tumoral , Nanotubos/química , Polímeros/química , Raios Infravermelhos , Lasers
5.
Adv Mater ; 35(15): e2210624, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36648109

RESUMO

Hydrogels are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a great challenge to develop hydrogels possessing simultaneously high strength, large stretchability, great fracture energy, and good fatigue threshold to suit different applications. Herein, a novel solvent-exchange-assisted wet-annealing strategy is proposed to prepare high performance poly(vinyl alcohol) hydrogels by extensively tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and entanglement". These hydrogels have large tensile strengths up to 11.19 ± 0.27 MPa and extremely high fracture strains of 1879 ± 10%. In addition, the fracture energy and fatigue threshold can reach as high as 25.39 ± 6.64 kJ m-2 and ≈1233 J m-2 , respectively. These superb mechanical properties compare favorably to those of other tough hydrogels, organogels, and even natural tendons and synthetic rubbers. This work provides a new and effective method to fabricate superstrong, tough, stretchable, and anti-fatigue hydrogels with potential applications in artificial tendons and ligaments.

6.
IEEE Trans Cybern ; PP2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063511

RESUMO

The set covering problem (SCP) is a fundamental NP-hard problem in computer science and has a broad range of important real-world applications. In practice, SCP instances transformed from real-world applications would be of large scale, so it is of significant importance to design effective heuristic algorithms, especially local search ones. However, there exist only few research works on developing local search algorithms for solving SCP. In this article, we propose a new local search algorithm for solving SCP, dubbed NuSC. In particular, NuSC introduces a new combined scoring function for subset selection, which combines different subset properties in an effective way and helps NuSC find more optimized solutions. Besides, NuSC incorporates a dynamic weighting scheme for elements, a tabu search strategy, and a novelty selection mechanism to further enhance its practical performance. In order to study the effectiveness and robustness of our proposed NuSC algorithm, we conduct extensive experiments to compare NuSC against many state-of-the-art competitors on various types of SCP instances. Our experimental results demonstrate that NuSC significantly outperforms its competitors on the majority of instances, indicating the superiority of NuSC. Also, our empirical evaluations confirm the effectiveness of each algorithmic technique underlying NuSC.

7.
Bioact Mater ; 14: 42-51, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310343

RESUMO

Photodynamic (PDT) and photothermal therapies (PTT) are emerging treatments for tumour ablation. Organic dyes such as porphyrin, chlorin, phthalocyanine, boron-dipyrromethene and cyanine are the clinically or preclinically used photosensitizer or photothermal agents. Development of structurally diverse near-infrared dyes with long absorption wavelength is of great significance for PDT and PTT. Herein, we report a novel near-infrared dye ML880 with naphthalimide modified cyanine skeleton. The introduction of naphthalimide moiety results in stronger electron delocalization and larger redshift in emission compared with IR820. Furthermore, ML880 is co-loaded with chemotherapeutic drug into ROS-responsive mesoporous organosilica (RMON) to construct nanomedicine NBD&ML@RMON, which exhibits remarkable tumor inhibition effects through PDT/PTT/chemotherapy in vivo.

8.
Biomacromolecules ; 23(3): 1251-1258, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35084834

RESUMO

Diabetic patients with type 1 or advanced type 2 stages need timely and precise insulin injection to regulate the daily blood glucose levels (BGLs). Otherwise, risks of serious or even deadly diabetes-associated complications occur. To achieve prolonged glucose regulation and low hypoglycemia risks, a novel on-demand glucose-responsive glycopolymer system was constructed for insulin delivery, which was self-assembled into nanoparticles by dynamic covalent bonds between two polymers: fluorophenylboronic acid-grafted polymer (poly-F) and polyol polymer (poly-G). Insulin was loaded during the assembly process. The nanoparticles showed excellent glucose responsiveness in vitro, with controlled insulin release at different glucose concentrations. In vivo treatment on type 1 diabetic mice showed prolonged BGL regulation and lower hypoglycemia risks. The mild preparation of the nanoparticles and outstanding glucose control shed light on the optional diabetic treatment for further clinical use.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hipoglicemia , Nanopartículas , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/química , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Insulina , Camundongos , Nanopartículas/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA