Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 425-434, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39096710

RESUMO

In this study, a simple one-pot synthesis process is employed to introduce Pd dopant and abundant S vacancies into In2S3 nanosheets. The optimized Pd-doped In2S3 photocatalyst, with abundant S vacancies, demonstrates a significant enhancement in photocatalytic hydrogen evolution. The joint modification of Pd doping and rich S vacancies on the band structure of In2S3 result in an improvement in both the light absorption capacity and proton reduction ability. It is worth noting that photogenerated electrons enriched by S vacancies can rapidly migrate to adjacent Pd atoms through an efficient transfer path constructed by Pd-S bond, effectively suppressing the charge recombination. Consequently, the dual-defective In2S3 shows an efficient photocatalytic H2 production rate of 58.4 ± 2.0 µmol·h-1. Additionally, further work has been conducted on other ternary metal sulfide, ZnIn2S4. Our findings provide a new insight into the development of highly efficient photocatalysts through synergistic defect engineering.

2.
Mitochondrial DNA B Resour ; 9(8): 986-990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108545

RESUMO

Blechnopsis orientalis (Linnaeus) C. Presl (1753) is a fern used both as food and medicine. It is found primarily in southern China and Southeast Asia, thriving in warm, humid shrublands or sparse forest. The total length of the chloroplast genome is 155,211 bp, including a large single-copy region (LSC, 81,877 bp), a small single-copy region (SSC, 21,500 bp), and two inverted repeat regions (IRs, 25,917 bp). The GC content is 41.3%. A total of 131 genes were annotated, including 88 protein-coding genes, eight rRNA genes, and 35 tRNA genes. The phylogenetic analysis using the maximum-likelihood method showed that B. orientalis and Oceaniopteris gibba were closely related. This study provides genomic resources for phylogenetic genetics and resource exploitation of B. orientalis.

3.
Front Cell Dev Biol ; 12: 1442052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129784

RESUMO

PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.

4.
J Colloid Interface Sci ; 677(Pt A): 610-619, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39116559

RESUMO

Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.

5.
Int Urol Nephrol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136852

RESUMO

BACKGROUND: Advancements in treatment regimens have led to improved outcomes in renal Immunoglobulin light-chain amyloidosis. Nevertheless, a subset of patients may still experience renal adverse events despite achieving hematologic very good partial response or better. This discrepancy may be attributed to the deposition pattern of amyloid in renal tissue. To enhance prognostic assessment, a staging system that incorporates both pathological characteristics and clinical indicators should be developed. METHODS: Patients newly diagnosed through renal biopsy between January 1, 2017, and December 31, 2022, were included. The renal pathology of patients was evaluated according to amyloid score (AS). Risk factors for end-stage renal disease or renal progression were identified by the competing risk model, then to develop a renal staging system. The Concordance index (C-index), internal cross-validation and Decision Curve Analysis (DCA) were used to evaluate the performance of the new staging system. RESULTS: 74 patients were included, and 16 (21.6%) patients had end-stage renal disease or renal progression within 24.7 (11.9, 50.7) months. AS and estimated glomerular filtration rate (eGFR) were identified as independent risk factors and the staging system based on them, which the C-index was 0.81 (95%CI, 0.73-0.89), had greater improvement than previous staging systems. The internal cross-validation and DCA also confirmed its great clinical benefits. CONCLUSION: The AS demonstrated its prognostic significance in Chinese patients, and the novel renal staging system based on AS and eGFR may provide great prognostic guidance for these patients.

6.
Int J Nanomedicine ; 19: 6603-6618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979533

RESUMO

Objective: Ovarian cancer cells are prone to acquire tolerance to chemotherapeutic agents, which seriously affects clinical outcomes. The development of novel strategies to enhance the targeting of chemotherapeutic agents to overcome drug resistance and minimize side effects is significant for improving the clinical outcomes of ovarian cancer patients. Methods: We employed folic acid (FA)-modified ZIF-90 nanomaterials (FA-ZIF-90) to deliver the chemotherapeutic drug, cisplatin (DDP), via dual targeting to improve its targeting to circumvent cisplatin resistance in ovarian cancer cells, especially by targeting mitochondria. FA-ZIF-90/DDP could rapidly release DDP in response to dual stimulation of acidity and ATP in tumor cells. Results: FA-ZIF-90/DDP showed good blood compatibility. It was efficiently taken up by human ovarian cancer cisplatin-resistant cells A2780/DDP and aggregated in the mitochondrial region. FA-ZIF-90/DDP significantly inhibited the mitochondrial activity and metastatic ability of A2780/DDP cells. In addition, it effectively induced apoptosis in A2780/DDP cells and overcame cisplatin resistance. In vivo experiments showed that FA-ZIF-90/DDP increased the accumulation of DDP in tumor tissues and significantly inhibited tumor growth. Conclusion: FA-modified ZIF-90 nanocarriers can improve the tumor targeting and anti-tumor effects of chemotherapeutic drugs, reduce toxic side effects, and are expected to be a novel therapeutic strategy to reverse drug resistance in ovarian cancer.


Assuntos
Antineoplásicos , Apoptose , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ácido Fólico , Imidazóis , Neoplasias Ovarianas , Zeolitas , Feminino , Cisplatino/farmacologia , Cisplatino/química , Cisplatino/farmacocinética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Zeolitas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Ácido Fólico/química , Ácido Fólico/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/administração & dosagem , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Environ Int ; 190: 108863, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959566

RESUMO

Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.

8.
Front Neurorobot ; 18: 1423738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015151

RESUMO

Introduction: Road cracks significantly shorten the service life of roads. Manual detection methods are inefficient and costly. The YOLOv5 model has made some progress in road crack detection. However, issues arise when deployed on edge computing devices. The main problem is that edge computing devices are directly connected to sensors. This results in the collection of noisy, poor-quality data. This problem adds computational burden to the model, potentially impacting its accuracy. To address these issues, this paper proposes a novel road crack detection algorithm named EMG-YOLO. Methods: First, an Efficient Decoupled Header is introduced in YOLOv5 to optimize the head structure. This approach separates the classification task from the localization task. Each task can then focus on learning its most relevant features. This significantly reduces the model's computational resources and time. It also achieves faster convergence rates. Second, the IOU loss function in the model is upgraded to the MPDIOU loss function. This function works by minimizing the top-left and bottom-right point distances between the predicted bounding box and the actual labeled bounding box. The MPDIOU loss function addresses the complex computation and high computational burden of the current YOLOv5 model. Finally, the GCC3 module replaces the traditional convolution. It performs global context modeling with the input feature map to obtain global context information. This enhances the model's detection capabilities on edge computing devices. Results: Experimental results show that the improved model has better performance in all parameter indicators compared to current mainstream algorithms. The EMG-YOLO model improves the accuracy of the YOLOv5 model by 2.7%. The mAP (0.5) and mAP (0.9) are improved by 2.9% and 0.9%, respectively. The new algorithm also outperforms the YOLOv5 model in complex environments on edge computing devices. Discussion: The EMG-YOLO algorithm proposed in this paper effectively addresses the issues of poor data quality and high computational burden on edge computing devices. This is achieved through optimizing the model head structure, upgrading the loss function, and introducing global context modeling. Experimental results demonstrate significant improvements in both accuracy and efficiency, especially in complex environments. Future research can further optimize this algorithm and explore more lightweight and efficient object detection models for edge computing devices.

9.
J Natl Compr Canc Netw ; 22(5): 290-298, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-39019054

RESUMO

The NCCN Guidelines for Cutaneous Melanoma (termed Melanoma: Cutaneous) provide multidisciplinary recommendations for diagnostic workup, staging, and treatment of patients. These NCCN Guidelines Insights focus on the update to neoadjuvant systemic therapy options and summarize the new clinical data evaluated by the NCCN panel for the recommended therapies in Version 2.2024 of the NCCN Guidelines for Cutaneous Melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Melanoma/diagnóstico , Melanoma/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Estadiamento de Neoplasias , Oncologia/normas , Oncologia/métodos
11.
Cancers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893072

RESUMO

Talimogene laherparepvec (TVEC) is a genetically modified oncolytic herpes simplex virus (HSV-1) that is used for the intralesional treatment of advanced or metastatic melanoma. Given that TVEC produces the granulocyte-macrophage colony-stimulating factor (GM-CSF), recent reports have suggested that radiation treatment (RT) given in conjunction with TVEC may provide synergistic immune activation at the site, and possibly systemically. However, studies on combining RT with TVEC remain limited. We conducted a retrospective review of melanoma patients from a single cancer center who received TVEC and RT in the same region of the body and compared them to patients who received TVEC with RT at another site (other than the site of TVEC injection). Between January 2015 and September 2022, we identified twenty patients who were treated with TVEC and RT; fourteen patients received TVEC and RT in the same region, and six had treatments in separate regions. Regions were determined at the time of analysis and were based on anatomic sites (such as arm, leg, torso, etc.). Kaplan-Meier analysis of progression-free survival (PFS), analyses of time to distant metastasis (DM), overall survival (OS), and locoregional control (LRC), and the corresponding log-rank test were performed. With a median follow-up of 10.5 months [mos] (range 1.0-58.7 mos), we found an improvement in PFS with TVEC and RT in the same region compared to different regions, which were 6.4 mos (95% CI, 2.4-NR mos) and 2.8 mos (95% CI, 0.7-4.4 mos), respectively; p = 0.005. There was also a significant improvement in DM when TVEC and RT were used in the same region compared to different regions: 13.8 mos (95% CI, 4.6-NR mos) and 2.8 mos (95% CI, 0.7-4.4 mos), respectively (p = 0.001). However, we found no difference in overall survival (OS) between patients who had TVEC and RT in the same region (19.0 mos, 95% confidence interval [CI], 4.1-not reached [NR] mos) and those who received treatments in different regions (18.5 mos, 95% CI, 1.0-NR mos); p = 0.366. There was no statistically significant improvement in locoregional control (LRC) in patients who had TVEC and RT in the same region was 26.0 mos (95% CI, 6.4-26.0 mos) compared to patients who received TVEC and RT in different regions (4.4 mos) (95% CI, 0.7-NR mos) (p = 0.115). No grade 3 or higher toxicities were documented in either group. Overall, there were improvements in PFS and DM when TVEC and RT were delivered to the same region of the body compared to when they were used in different regions. However, we did not find a significant difference in locoregional recurrence or OS. Future studies are needed to assess the sequence and timing of combining RT and TVEC to potentially enhance the immune response both locally and distantly.

12.
Phytochemistry ; 225: 114198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936528

RESUMO

Three previously undescribed and sixteen known alkaloids were bioguidedly isolated from the bulbs of Narcissus tazetta subsp. chinensis (M.Roem.) Masamura & Yanagih. The structures were elucidated by spectroscopic data, including HRESIMS, NMR, and ECD. Eleven of the isolated alkaloids exhibited immunosuppressive activity on the proliferation of human T cells. (+)-Narciclasine (18) showed the most significantly suppressive activity with an IC50 value of 14 ± 5 nM. In vitro, (+)-narciclasine (18) blocked NF-κB signal transduction, but did not affect PI3K/AKT signal transduction. What was more, (+)-narciclasine significantly reduced ALT and AST levels and alleviated liver damage induced by ConA in AIH mouse model.


Assuntos
Alcaloides , Proliferação de Células , Imunossupressores , Narcissus , Narcissus/química , Humanos , Animais , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Imunossupressores/farmacologia , Imunossupressores/química , Imunossupressores/isolamento & purificação , Camundongos , Proliferação de Células/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Estrutura Molecular , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Benzofenantridinas/farmacologia , Benzofenantridinas/química , Benzofenantridinas/isolamento & purificação , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Estereoisomerismo , Transdução de Sinais/efeitos dos fármacos , Fenantridinas , Alcaloides de Amaryllidaceae
13.
Biomed Pharmacother ; 175: 116741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744218

RESUMO

Cadmium (Cd) is a widespread environmental toxicant that poses significant threat to public health. After intake, Cd is distributed throughout the body via blood and lymphatic circulation. However, the effect of Cd on lymphatic vessels has not been revealed. In this study, mice were exposed to 10 µM cadmium chloride through drinking water immediately after corneal alkali burn. In vivo analyses showed that Cd treatment enhances the alkali burn-induced corneal lymphangiogenesis, which is characterized by increased expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), prospero-related homeobox 1 (PROX-1) and vascular endothelial growth factor receptor 3 (VEGFR3). In vitro, the proliferation and migration of human dermal lymphatic endothelial cells (HDLECs) are increased by 1 µM Cd treatment, while inhibited by 10 µM Cd treatment. At a concentration of 1 µM, Cd specifically induces phosphorylation of signal transducer and activator of transcription 3 (STAT3), but has no effect on the MAPK, AKT, or NF-κB signaling pathway. In the presence of the STAT3 inhibitor STATTIC, Cd fails to induce HDLECs proliferation and migration. In addition, Cd upregulates VEGFR3 expression and its gene promoter activity in a STAT3-dependent manner. Our study suggests that low-dose Cd promotes lymphangiogenesis through activation of the STAT3 signaling pathway.


Assuntos
Movimento Celular , Proliferação de Células , Linfangiogênese , Fator de Transcrição STAT3 , Transdução de Sinais , Linfangiogênese/efeitos dos fármacos , Animais , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cádmio/toxicidade , Masculino , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia
14.
Intern Emerg Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743128

RESUMO

To develop a more accurate prognostic model that incorporates indicators of multi-organ involvement for immunoglobulin light-chain (AL) Amyloidosis patients. Biopsy-proven AL amyloidosis patients between January 1, 2012, and February 28, 2023, were enrolled and randomly divided into a training set and a test set at a ratio of 7:3. Prognostic indicators that comprehensively cover cardiac, renal, and hepatic involvement were identified in the training set by random survival forest (RSF). Then, RSF and Cox models were established. The Concordance index (C-index) and integrated brier scores (IBS) were applied to evaluate the models' performance in the test set. Besides, the net reclassification index (NRI) and integrated discrimination improvement (IDI) were calculated. A total of 173 eligible patients were included. After a median follow-up of 25.9 (9.2, 50.3) months, 48 (27.7%) patients died. Creatine kinase-MB, estimated glomerular filtration rate ≤ 50 mL/min/1.73 m2, interventricular septum ≥ 15 mm, ejection fraction, alanine aminotransferase and Live involved were selected to develop prediction models. The RSF model based on the above indicators achieved C-index and IBS values of 0.834 (95% CI 0.725-0.915) and 0.151 (95% CI 0.1402-0.181), respectively. At last, the NRI and IDI of the RSF model were 0.301 (95% CI 0.048-0.546, P = 0.012) and 0.157 (95% CI 0.041-0.269, P < 0.001) at 5-year by comparing the RSF model with the Cox model which is based on the Mayo 2012 staging system. The RSF model that incorporates indicators of multi-organ involvement had a great performance, which may be helpful for physicians' decision-making and more accurate overall survival prediction.

15.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792167

RESUMO

Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3ß, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aß) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.


Assuntos
Apoptose , Sinergismo Farmacológico , Flavonoides , Metformina , Aldeído Pirúvico , Espécies Reativas de Oxigênio , Metformina/farmacologia , Metformina/química , Ratos , Flavonoides/farmacologia , Flavonoides/química , Células PC12 , Animais , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Transdução de Sinais/efeitos dos fármacos
16.
Langmuir ; 40(20): 10663-10675, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718299

RESUMO

Electrocatalytic reduction (ECR) of CO2 to chemical products is an important carbon emission reduction method. This work uses DFT to study the stability of N-doped graphene-supported four metal single-atom catalysts (M-N-C) and the effects of the coordination environment and metal centers on the selectivity of CO2 ECR to C1 products. The results show that Fe, Co, Ni, and Cu have good stability. The coordination environment has a significant modulating effect on product selectivity, and the change of the number of ligand nitrogen atoms will affect the size of the potential-limiting step of each product. When the number of nitrogen ligands is the same, the different metal centers of the M-N-C catalyst have a significant effect on the selectivity of different products. In addition, the introduction of nitrogen atom ligands can adjust the electronic structure of the graphene-supported metal center, increase the d-band center of most metals, and improve the reaction activity.

17.
Biochem Genet ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656671

RESUMO

Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.

18.
Bioorg Chem ; 147: 107356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604021

RESUMO

Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.


Assuntos
Corantes Fluorescentes , Heparina , Peptídeos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Heparina/análise , Heparina/química , Peptídeos/química , Peptídeos/síntese química , Estrutura Molecular , Humanos , Espectrometria de Fluorescência
19.
Mitochondrial DNA B Resour ; 9(4): 423-427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586511

RESUMO

Lagochilus ilicifolius Bunge ex Bentham, Labiat. Gen is a perennial herb with much-branched stems native to Nei Mongol, Ningxia, Gansu, N Shaanxi. It can be used clinically as a hemostatic agent. The chloroplast genome length is 151,466 bp. It contained two inverted repeat regions of 25,660 bp each, a large single-copy region of length 82,504 bp, and a small single-copy region of length 17,642 bp. Also, the GC content is 38.6%. There were 133 genes annotated, including 88 known protein-coding genes, 37 tRNAs, and eight rRNAs. The phylogenetic tree was constructed using Bayesian method for plastome data of 29 species. The entire chloroplast genome of L. ilicifolius within the Lamiaceae is the first to reveal genetic taxonomy at the molecular level, and the new phylogenetic tree data can be used for future evolutionary studies.

20.
Front Microbiol ; 15: 1366760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646636

RESUMO

Background: Quorum sensing (QS) research stands as a pivotal and multifaceted domain within microbiology, holding profound implications across various scientific disciplines. This bibliometric analysis seeks to offer an extensive overview of QS research, covering the period from 2004 to 2023. It aims to elucidate the hotspots, trends, and the evolving dynamics within this research domain. Methods: We conducted an exhaustive review of the literature, employing meticulous data curation from the Science Citation Index Extension (SCI-E) within the Web of Science (WOS) database. Subsequently, our survey delves into evolving publication trends, the constellation of influential authors and institutions, key journals shaping the discourse, global collaborative networks, and thematic hotspots that define the QS research field. Results: The findings demonstrate a consistent and growing interest in QS research throughout the years, encompassing a substantial dataset of 4,849 analyzed articles. Journals such as Frontiers in Microbiology have emerged as significant contributor to the QS literature, highlighting the increasing recognition of QS's importance across various research fields. Influential research in the realm of QS often centers on microbial communication, biofilm formation, and the development of QS inhibitors. Notably, leading countries engaged in QS research include the United States, China, and India. Moreover, the analysis identifies research focal points spanning diverse domains, including pharmacological properties, genetics and metabolic pathways, as well as physiological and signal transduction mechanisms, reaffirming the multidisciplinary character of QS research. Conclusion: This bibliometric exploration provides a panoramic overview of the current state of QS research. The data portrays a consistent trend of expansion and advancement within this domain, signaling numerous prospects for forthcoming research and development. Scholars and stakeholders engaged in the QS field can harness these findings to navigate the evolving terrain with precision and speed, thereby enhancing our comprehension and utilization of QS in various scientific and clinical domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA