Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Front Pharmacol ; 15: 1293428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698822

RESUMO

Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.

2.
JAMA Netw Open ; 7(2): e2354937, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335001

RESUMO

Importance: Prehypertension increases the risk of developing hypertension and other cardiovascular diseases. Early and effective intervention for patients with prehypertension is highly important. Objective: To assess the efficacy of Tai Chi vs aerobic exercise in patients with prehypertension. Design, Setting, and Participants: This prospective, single-blinded randomized clinical trial was conducted between July 25, 2019, and January 24, 2022, at 2 tertiary public hospitals in China. Participants included 342 adults aged 18 to 65 years with prehypertension, defined as systolic blood pressure (SBP) of 120 to 139 mm Hg and/or diastolic BP (DBP) of 80 to 89 mm Hg. Interventions: Participants were randomized in a 1:1 ratio to a Tai Chi group (n = 173) or an aerobic exercise group (n = 169). Both groups performed four 60-minute supervised sessions per week for 12 months. Main Outcomes and Measures: The primary outcome was SBP at 12 months obtained in the office setting. Secondary outcomes included SBP at 6 months and DBP at 6 and 12 months obtained in the office setting and 24-hour ambulatory BP at 12 months. Results: Of the 1189 patients screened, 342 (mean [SD] age, 49.3 [11.9] years; 166 men [48.5%] and 176 women [51.5%]) were randomized to 1 of 2 intervention groups: 173 to Tai Chi and 169 to aerobic exercise. At 12 months, the change in office SBP was significantly different between groups by -2.40 (95% CI, -4.39 to -0.41) mm Hg (P = .02), with a mean (SD) change of -7.01 (10.12) mm Hg in the Tai Chi group vs -4.61 (8.47) mm Hg in the aerobic exercise group. The analysis of office SBP at 6 months yielded similar results (-2.31 [95% CI, -3.94 to -0.67] mm Hg; P = .006). Additionally, 24-hour ambulatory SBP (-2.16 [95% CI, -3.84 to -0.47] mm Hg; P = .01) and nighttime ambulatory SBP (-4.08 [95% CI, -6.59 to -1.57] mm Hg; P = .002) were significantly reduced in the Tai Chi group compared with the aerobic exercise group. Conclusions and Relevance: In this study including patients with prehypertension, a 12-month Tai Chi intervention was more effective than aerobic exercise in reducing SBP. These findings suggest that Tai Chi may help promote the prevention of cardiovascular disease in populations with prehypertension. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR1900024368.


Assuntos
Pré-Hipertensão , Tai Chi Chuan , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão Sanguínea , Exercício Físico , Pré-Hipertensão/terapia , Estudos Prospectivos , Adolescente , Adulto Jovem , Idoso
3.
Front Genet ; 14: 1266869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881804

RESUMO

Background: Multiple observational studies have discovered a substantial link between obstructive sleep apnea (OSA) and ventricular dysfunction. However, conventional observational studies are vulnerable to causal reversal and confounding, making it challenging to infer the causes of effects and their direction. Methods: With the help of a bidirectional, two-sample Mendelian randomization (MR) study, we assessed the potential causality between OSA and left and right ventricular (LV, RV) structure and function. We conducted our analysis utilizing summary data from genome-wide association studies of OSA (16,761 cases and 201,194 controls) in the FinnGen Study, as well as LV (36,041 participants) and RV (29,506 participants) in the UK Biobank cardiovascular magnetic resonance research. The inverse variance weighted (IVW) was selected as the main strategy, with the MR-Egger and weighted median methods serving as supplements. Other methods were employed as sensitivity analysis tools to look at heterogeneity and pleiotropy, including MR-Egger intercept, Cochran Q statistic, MR-PRESSO, and leave-one-out analysis. Results: In the primary IVW analysis, genetically predicted OSA was strongly causative on LV end-diastolic volume (ß = 0.114, 95% CI = 0.034-0.194, p = 0.006) and LV stroke volume (ß = 0.111, 95% CI = 0.031-0.191, p = 0.007), and genetically predicted LV ejection fraction was linked to an increased risk of OSA (OR = 1.161, 95% CI = 1.029-1.309, p = 0.015). However, there was no connection found between OSA and any RV parameters. Conclusion: Our genetic analysis raises a potential causative link between OSA and ventricular structure and function, which may improve the knowledge of OSA as a risk factor for cardiovascular disease by demonstrating a direct impact on cardiac structure and function.

4.
Front Cardiovasc Med ; 10: 1285863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795478

RESUMO

[This corrects the article DOI: 10.3389/fcvm.2023.1057870.].

5.
Front Cardiovasc Med ; 10: 1147740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564906

RESUMO

Introduction: Preventing ischemia-reperfusion injury is the main direction of myocardial infarction treatment in the convalescent stage. Some studies have suggested that saponins in Traditional Chinese medicine (TCM) preparations can protect the myocardium by various mechanisms. Our meta-analysis aims to evaluate the efficacy of TCM saponins in treating myocardial ischemia-reperfusion injury (MIRI) and to summarize the potential molecular mechanisms further. Methods: We conducted a literature search in six electronic databases [Web of Science, PubMed, Embase, Cochrane Library, Sinomed, China National Knowledge Infrastructure (CNKI)] until October 2022. Results: Seventeen eligible studies included 386 animals (254 received saponins and 132 received vehicles). The random effect model is used to calculate the combined effect. The effect size is expressed as the weighted average difference (WMD) and 95% confidence interval (CI). Compared with placebo, saponins preconditioning reduced infarct size after MIRI significantly (WMD: -3.60,95% CI: -4.45 to -2.74, P < 0.01, I2: 84.7%, P < 0.001), and significantly increased EF (WMD: 3.119, 95% CI: 2.165 to 4.082, P < 0.01, I2: 82.9%, P < 0.0 L) and FS (WMD: 3.157, 95% CI: 2.218 to 4.097, P < 0.001, I2: 81.3%, P < 0.001). Discussion: The results show that the pre-administration of saponins from TCM has a significant protective effect on MIRI in preclinical studies, which provides an application prospect for developing anti-MIRI drugs with high efficiency and low toxicity.

6.
Int Immunopharmacol ; 123: 110744, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552908

RESUMO

Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Qualidade de Vida , Hemorragia Cerebral/terapia , Hemorragia Cerebral/patologia , Encéfalo/metabolismo , Acidente Vascular Cerebral/complicações , Lesões Encefálicas/tratamento farmacológico , Edema Encefálico/metabolismo , Proteínas do Sistema Complemento/metabolismo
7.
Front Cardiovasc Med ; 10: 1064949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416923

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a new technology that can be used to explore molecular changes in complex cell clusters at the single-cell level. Single-cell spatial transcriptomic technology complements the cell-space location information lost during single-cell sequencing. Coronary artery disease is an important cardiovascular disease with high mortality rates. Many studies have explored the physiological development and pathological changes in coronary arteries from the perspective of single cells using single-cell spatial transcriptomic technology. This article reviews the molecular mechanisms underlying coronary artery development and diseases as revealed by scRNA-seq combined with spatial transcriptomic technology. Based on these mechanisms, we discuss the possible new treatments for coronary diseases.

8.
Front Cardiovasc Med ; 10: 1057870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180791

RESUMO

A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.

10.
Trials ; 23(1): 1001, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510218

RESUMO

BACKGROUND: Compared with optimal blood pressure (BP), the prehypertension increases the risk of incident hypertension, cardiovascular (CV) events, and death. Moderate intensity of regular physical activity can reduce BP. However, aerobic exercise has some limitations. As a safe, low-impact, enjoyable, and inexpensive form of exercise that requires minimal equipment and space, Tai Chi is expected as a viable alternative to aerobic exercise. The study aimed to assess the effect of Tai Chi intervention program, compared with aerobic exercise, on the BP in prehypertension patients. METHODS: This study is a 12-month, two-center, single-blind, parallel, randomized controlled trial. Three hundred forty-two patients with prehypertension [with a systolic blood pressure (SBP) in the range of 120 mmHg to 139 mmHg and/or a diastolic blood pressure (DBP) in the range of 80 mmHg to 89 mmHg] are randomized to one of two intervention groups in a 1:1 ratio: Tai Chi or aerobic exercise. BP monitoring methods of office blood pressure, ambulatory blood pressure monitoring (ABPM), and home blood pressure monitoring (HBPM) are used at the same time to detect BP in multiple dimensions. The primary outcome is the comparison of SBP change from baseline to 12 months in Tai Chi group and SBP change from baseline to 12 months in aerobic exercise group. The secondary endpoints are as following: (1) the comparison of DBP of office blood pressure change from baseline to 12 months between Tai Chi group and aerobic exercise group, (2) the comparison of BP and the variability of BP assessed through ABPM change from baseline to 12 months between Tai Chi group and aerobic exercise group, (3) the comparison of BP assessed through HBPM change from baseline to 12 months between Tai Chi group and aerobic exercise group. DISCUSSION: This will be the first randomized controlled trial to specifically study the benefits of Tai Chi on the blood pressure control in patients with prehypertension. The successful completion of this study will help to provide evidence for whether Tai Chi is more desirable than aerobic exercise. TRIAL REGISTRATION: Trial registration number: Chinese Clinical Trial Registry, ChiCTR1900024368. Registered on 7 July 2019, http://www.chictr.org.cn/edit.aspx?pid=39478&htm=4.


Assuntos
Hipertensão , Tai Chi Chuan , Humanos , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Método Simples-Cego , Exercício Físico/fisiologia , Hipertensão/diagnóstico , Hipertensão/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Int J Gen Med ; 15: 7569-7579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199586

RESUMO

Purpose: This study aims to identify key genes in slow transit constipation (STC). We also sought to explore the potential link between STC and colorectal cancer. Patients and Methods: mRNA expression profiles were obtained by RNA sequencing, and differentially expressed genes were identified. Functional enrichment analysis and a protein-protein interaction (PPI) network was explored, and differentially expressed genes common to STC and colorectal cancer were examined. Analysis of the effect of constipation and colorectal cancer common genes on the overall survival of colorectal cancer patients based on GEPIA database. Results: Functional enrichment showed that significantly different genes are related to lymphocyte chemotaxis, positive regulation of inflammatory response, cellular response to tumor necrosis factor, extracellular region, extracellular space and chemokine activity. The hub gene for STC was found in the PPI network. In addition, AQP8 and CFD were common differential genes for STC and colorectal cancer. AQP8 affects overall survival in patients with colorectal cancer. Conclusion: Our findings will contribute to understanding the pathology of STC at the molecular level, with the first discovery that AQP8 may be a hub gene in the transition from STC to colorectal cancer.

12.
Front Cardiovasc Med ; 9: 946137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082126

RESUMO

As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.

13.
Oxid Med Cell Longev ; 2022: 2852251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132225

RESUMO

Doxorubicin (DOX) is a class of effective chemotherapeutic agents widely used in clinical practice. However, its use has been limited by cardiotoxicity. The mechanism of DOX-induced cardiotoxicity (DIC) is complex, involving oxidative stress, Ca2+ overload, inflammation, pyroptosis, ferroptosis, apoptosis, senescence, etc. Exosomes (EXOs), as extracellular vesicles (EVs), play an important role in the material exchange and signal transmission between cells by carrying components such as proteins and RNAs. More recently, there has been a growing number of publications focusing on the protective effect of EXOs on DIC. Here, this review summarized the main mechanisms of DIC, discussed the mechanism of EXOs in the treatment of DIC, and further explored the value of EXOs as diagnostic biomarkers and therapeutic strategies for DIC.


Assuntos
Cardiotoxicidade , Exossomos , Apoptose , Biomarcadores/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Exossomos/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
14.
Aging (Albany NY) ; 14(19): 8110-8136, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36178367

RESUMO

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide that bears an enormous healthcare burden and aging is a major contributing factor to CVDs. Functional gene expression network during aging is regulated by mRNAs transcriptionally and by non-coding RNAs epi-transcriptionally. RNA modifications alter the stability and function of both mRNAs and non-coding RNAs and are involved in differentiation, development, and diseases. Here we review major chemical RNA modifications on mRNAs and non-coding RNAs, including N6-adenosine methylation, N1-adenosine methylation, 5-methylcytidine, pseudouridylation, 2' -O-ribose-methylation, and N7-methylguanosine, in the aging process with an emphasis on cardiovascular aging. We also summarize the currently available methods to detect RNA modifications and the bioinformatic tools to study RNA modifications. More importantly, we discussed the specific implication of the RNA modifications on mRNAs and non-coding RNAs in the pathogenesis of aging-associated CVDs, including atherosclerosis, hypertension, coronary heart diseases, congestive heart failure, atrial fibrillation, peripheral artery disease, venous insufficiency, and stroke.


Assuntos
Doenças Cardiovasculares , RNA Longo não Codificante , Humanos , Doenças Cardiovasculares/genética , Ribose , Envelhecimento/genética , RNA Mensageiro , RNA , Adenosina/metabolismo , RNA Longo não Codificante/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-35815278

RESUMO

Aim: To elucidate the mechanism of action of berberine on ischaemic stroke based on network pharmacology, bioinformatics, and experimental verification. Methods: Berberine-related long noncoding RNAs (lncRNAs) were screened from public databases. Differentially expressed lncRNAs in ischaemic stroke were retrieved from the Gene Expression Omnibus (GEO) database. GSE102541 was comprehensively analysed using GEO2R. The correlation between lncRNAs and ischaemic stroke was evaluated by the mammalian noncoding RNA-disease repository (MNDR) database. The component-target-disease network and protein-protein interaction (PPI) network of berberine in the treatment of ischaemic stroke were constructed by using network pharmacology. We then performed gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Finally, according to the molecular docking analysis and the binding probability between the lncRNA and key proteins, the effectiveness of the results was further verified by in vitro experiments. Results: After matching stroke-related lncRNAs with berberine-related lncRNAs, four genes were selected as potential targets of berberine in the treatment of ischaemic stroke. Subsequently, lncRNA H19 was identified as the potential crucial regulatory lncRNA of berberine. Here, 52 target proteins of berberine in the treatment of ischaemic stroke were identified through database mining. Through topological analysis, 20 key targets were identified which were enriched in inflammation, apoptosis, and immunity. Molecular docking results showed that MAPK8, JUN, and EGFR were central genes. Finally, in vitro experiments demonstrated that lncRNA H19, p-JNK1/JNK1, p-c-Jun/c-Jun, and EGFR expressions were significantly increased in hypoxia-treated SH-SY5Y cells and were restored by berberine treatment. Conclusion: The potential targets and biological effects of berberine in the treatment of ischaemic stroke were predicted in this study. The lncRNA H19/EGFR/JNK1/c-Jun signalling pathway may be a key mechanism of berberine-induced neuroprotection in ischaemic stroke.

16.
Front Cardiovasc Med ; 9: 896792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770215

RESUMO

Anthracyclines (ANTs) are a class of anticancer drugs widely used in oncology. However, the clinical application of ANTs is limited by their cardiotoxicity. The mechanisms underlying ANTs-induced cardiotoxicity (AIC) are complicated and involve oxidative stress, inflammation, topoisomerase 2ß inhibition, pyroptosis, immunometabolism, autophagy, apoptosis, ferroptosis, etc. Ferroptosis is a new form of regulated cell death (RCD) proposed in 2012, characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. An increasing number of studies have found that ferroptosis plays a vital role in the development of AIC. Therefore, we aimed to elaborate on ferroptosis in AIC, especially by doxorubicin (DOX). We first summarize the mechanisms of ferroptosis in terms of oxidation and anti-oxidation systems. Then, we discuss the mechanisms related to ferroptosis caused by DOX, particularly from the perspective of iron metabolism of cardiomyocytes. We also present our research on the prevention and treatment of AIC based on ferroptosis. Finally, we enumerate our views on the development of drugs targeting ferroptosis in this emerging field.

17.
Front Pharmacol ; 13: 811422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721128

RESUMO

Atherosclerotic cardiovascular diseases (ASCVDs) are the most important diseases that endanger people's health, leading to high morbidity and mortality worldwide. In addition, various thrombotic events secondary to cardiovascular and cerebrovascular diseases need must be considered seriously. Therefore, the development of novel anti-platelet drugs with high efficiency, and fewer adverse effects has become a research focus for preventing of cardiovascular diseases (CVDs). Blood-activation and stasis-removal from circulation have been widely considered as principles for treating syndromes related to CVDs. Blood-activating Chinese (BAC botanical drugs, as members of traditional Chinese medicine (TCM), have shown to improve hemodynamics and hemorheology, and inhibit thrombosis and atherosclerosis. Modern medical research has identified that a combination of BAC botanical drugs and anti-platelet drugs, such as aspirin or clopidogrel, not only enhances the anti-platelet effects, but also reduces the risk of bleeding and protects the vascular endothelium. The anti-platelet mechanism of Blood-activating Chinese (BAC) botanical drugs and their compounds is not clear; therefore, their potential targets need to be explored. With the continuous development of bioinformatics and "omics" technology, some unconventional applications of BAC botanical drugs have been discovered. In this review, we will focus on the related targets and signaling pathways of anti-atherosclerotic treatments involving a combination of BAC botanical drugs and anti-platelet drugs reported in recent years.

18.
Oxid Med Cell Longev ; 2022: 8726564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615579

RESUMO

Ischemic heart disease (IHD) is currently one of the leading causes of death among cardiovascular diseases worldwide. In addition, blood reflow and reperfusion paradoxically also lead to further death of cardiomyocytes and increase the infarct size. Multiple evidences indicated that mitochondrial function and structural disorders were the basic driving force of IHD. We summed up the latest evidence of the basic associations and underlying mechanisms of mitochondrial damage in the event of ischemia/reperfusion (I/R) injury. This review then reviewed natural plant products (NPPs) which have been demonstrated to mitochondria-targeted therapeutic effects during I/R injury and the potential pathways involved. We realized that NPPs mainly maintained the integrality of mitochondria membrane and ameliorated dysfunction, such as improving abnormal mitochondrial calcium handling and inhibiting oxidative stress, so as to protect cardiomyocytes during I/R injury. This information will improve our knowledge of mitochondrial biology and I/R-induced injury's pathogenesis and exhibit that NPPs hold promise for translation into potential therapies that target mitochondria.


Assuntos
Produtos Biológicos , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Produtos Biológicos/uso terapêutico , Humanos , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
19.
Biomed Pharmacother ; 149: 112893, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35366532

RESUMO

Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.


Assuntos
Produtos Biológicos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Espécies Reativas de Oxigênio/metabolismo , Reperfusão
20.
Front Pharmacol ; 13: 865353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321323

RESUMO

Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, has been used in Chinese traditional medicine for over 3,000 years. BBR has been shown in both traditional and modern medicine to have a wide range of pharmacological actions, including hypoglycemic, hypolipidemic, anti-obesity, hepatoprotective, anti-inflammatory, and antioxidant activities. The unregulated reaction chain induced by oxidative stress as a crucial mechanism result in myocardial damage, which is involved in the pathogenesis and progression of many cardiovascular diseases (CVDs). Numerous researches have established that BBR protects myocardium and may be beneficial in the treatment of CVDs. Given that the pivotal role of oxidative stress in CVDs, the pharmacological effects of BBR in the treatment and/or management of CVDs have strongly attracted the attention of scholars. Therefore, this review sums up the prevention and treatment mechanisms of BBR in CVDs from in vitro, in vivo, and finally to the clinical field trials timely. We summarized the antioxidant stress of BBR in the management of coronary atherosclerosis and myocardial ischemia/reperfusion; it also analyzes the pathogenesis of oxidative stress in arrhythmia and heart failure and the therapeutic effects of BBR. In short, BBR is a hopeful drug candidate for the treatment of CVDs, which can intervene in the process of CVDs from multiple angles and different aspects. Therefore, if we want to apply it to the clinic on a large scale, more comprehensive, intensive, and detailed researches are needed to be carried out to clarify the molecular mechanism and targets of BBR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA